当前位置: 首页 > 范文大全 > 公文范文 >

数学上册知识点五篇(范例推荐)

发布时间:2023-01-13 11:18:03 | 来源:网友投稿

数学上册知识点1  一、学习目标:  1.认识长度单位毫米,建立1毫米的长度概念,会用毫米厘米度量比较短的物体的长度;  2.较透彻地理解万以内笔算加法的计算法则,并能应用法则准确地计算两位数连续进下面是小编为大家整理的数学上册知识点五篇(范例推荐),供大家参考。

数学上册知识点五篇(范例推荐)

数学上册知识点1

  一、学习目标:

  1.认识长度单位毫米,建立1毫米的长度概念,会用毫米厘米度量比较短的物体的长度;

  2.较透彻地理解万以内笔算加法的计算法则,并能应用法则准确地计算两位数连续进位的加法题;

  3.初步认识四边形,了解四边形的特点,并能根据四边形的特点对四边形进行分类;

  4.知道有余数除法的含义,体会有余数出发的实际背景;

  5.认识时间单位“秒”,知道1分=60秒;会进行一些时间的简单计算;初步建立时、分、秒的时间观念,养成遵守和爱惜时间的意识和习惯;

  6.掌握一位数乘整十、整百、整千数的口算方法,会进行相应的口算;知道一位数乘整十、整百、整千数的简便算法;

  7.初步认识几分之一,会读会写几分之一,能比较分子是1的分数大小;

  8.理解一位数乘整十数的口算法。

  二、学习难点:

  1.认识时间单位时、分、秒,知道1分=60秒,会一些有关时间的简单计算;

  2.知道有余数的除法的含义,来自生活中;

  3.根据四边形的特点对四边形进行分类;

  4.哪一位上的数相加满十,要向前一位进1,而且在前一位上的数相加时,要记得加上进上来的1;

  5.认识长度单位毫米,会用毫米度量物体长度。

  三、知识点概括总结

  1.毫米:毫米是长度单位和降雨量单位,英文缩写mm。

  1毫米=0.1厘米=0.01分米=0.001米=0.000001千米

  2.厘米:是一个长度计量单位,等于一米的百分之一。长度单位,符号为cm.,1厘米=1/100米。

  1厘米=10毫米=0.1分米=0.01米=0.00001千米

  3.分米:是长度的公制单位之一,1分米相当于1米的十分之一。

  0.0001千米(km)=1分米

  0.1米(m)=1分米

  10厘米(cm)=1分米

  100毫米(mm)=1分米

  4.千米:千米又称公里,是长度单位,通常用于衡量两地之间的距离。是一个国际标准长度计量单位,符号km。

  1千米(公里)=1,000米(公尺)=100,000厘米(公分)=1,000,000毫米(公厘)

  5.吨:质量单位,公制一吨等于1000公斤。

  6.加法:基本的四则运算之一,它是指将两个或者两个以上的数、量合起来,变成一个数、量的计算。

  表达加法的符号为加号(+)。

  进行加法时以加号将各项连接起来,把和放在等号(=)之后,例:1、2和3之和是6,就写成︰1+2+3=6.

  加法各部分名称:“+”是加号,加号前面和后面的数是加数,“=”是等于号,等于号后面的数是和。

  例:100(加数)+(加号)300(加数)=(等于号)400(和)

  加法性质:(1)加法交换律:a+b=b+a

  (2)加法结合律:a+b+c=a+(b+c)

  7.减法:四则运算之一,将一个数或量从另一个数或量中减去的运算叫做减法。

  已知两个加数的和与其中一个加数,求另一个加数的运算叫做减法。

  减法的性质:减去一个数,等于加这个数的相反数。

  8.验算:算题算好以后,再通过逆运算(如减法算题用加法,除法算题用乘法)演算一遍,检验以前运算的结果是否正确。

  验算的作用:验算能够有效地检查出计算过程中出现的错误,但对解题思维上的错误无太大用处,通过验算(用结果来推导条件)所得的数据与原数据比较来建议运算是否正确。

  9.四边形:由不在同一直线上四条线段依次首尾相接围成的封闭的立体图形叫四边形。由凸四边形和凹四边形组成。

  10.*行四边形:两组对边分别*行的四边形叫做*行四边形。

  11.周长:环绕有限面积的区域边缘的长度积分,叫做周长,图形一周的长度,就是图形的周长。周长的长度因此亦相等于图形所有边的和。

  12.估计:根据情况,对事物的性质、数量、变化等做大概的推断。

  13.余数:在整数的除法中,只有能整除与不能整除两种情况。当不能整除时,就产生余数,取余数运算:1.指整数除法中被除数未被除尽部分。

  例:27除以6,商数为4,余数为3.

  余数的性质:余数有如下一些重要性质(a,b,c均为自然数):

  (1)余数小于除数;

  (2)被除数=除数×商+余数。

  除数=(被除数-余数)÷商;

  商=(被除数-余数)÷除数;

  余数=被除数-除数×商。

  14.秒:时间单位时间单位秒(second)是国际单位制中时间的基本单位,符号是s。

  15.分:时间单位,等于1/60小时,或60秒。

  16.乘法:将相同的数加法起来的快捷方式。其运算结果称为积。

  乘法算式中各数的名称:“×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。

  例:10(因数)×(乘号)200(因数)=(等于号)20xx(积)

  18.分数:把单位“1”*均分成若干份,表示这样的一份或几份的数叫分数。表示这样的一份的数叫分数单位。

  分子在上分母在下,也可以把它当做除法来看,用分子除以分母,相反乘法也可以改为用分数表示。

  19.分数线、分子、分母:分数中间的一条横线叫做分数线,分数线上面的数叫做分子,分数线下面的数叫做分母。读作几分之几。

  分数可以表述成一个除法算式:如二分之一等于1除以2,其中,1分子等于被除数,分数线等于除号,2分母等于除数,而0.5分数值则等于商。

  20.分数由来:分数在我们*很早就有了,最初分数的表现形式跟现在不一样。后来,印度出现了和我国相似的分数表示法。再往后,*人发明了分数线,分数的表示法就成为现在这样了。

  200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。如果我们把它分成三等份,每份是7/3米,像7/3就是一种新的数,我们把它叫做分数。

  21.可能性:可能性是指事物发生的概率,是包含在事物之中并预示着事物发展趋势的量化指标。

数学上册知识点2

  小学学习数学最简单的方法就是通读数学书上的内容,通读课文能够加深学生对课本的理解,同时在通读过程中形成自己的解题意识。下面给大家带来小学二年级数学上册知识点,希望对你们有所帮助。

  第一单元:观察物体

  1.通过观察活动,体验站在不同的位置观察物体,看到的形状可能是不同的。

  2.我能辨认一个立体实物从前面、侧面和上面所看到的*面图形。

  第二单元:加减混合运算(重点)

  1.连加、连减的笔算顺序和连加、连减的口算顺序一样,都是从左往右依次计算。

  ①连加计算可以分步计算,也可以写成一个竖式计算,计算方法与两个数相加一样,都要把相同数位对齐,从个位加起。

  ②连减运算可以分步计算,也可以写成一个竖式计算,计算方法与两个数相减一样,都要把相同数位对齐,从个位减起。

  2.加、减混合算式,其运算顺序、竖式写法都与连加、连减相同。

  3.在一个算式里,如果有小括号,要先算小括号里面的。

  4.加、减法估算:在日常生活中有些情况不需要进行精确计算,只是算出大致的结果就可以了,在这种情况下就需要估算。估算时,把这个数估成与他最接近的整十数再去计算。

  5.解答应用题的步骤:①先读题;②列横式,写结果,千万别忘记写单位(单位为:多少或者几后面的那个字或词);③作答。

  6.求比一个数多几的数的应用题用加法;求比一个数少几的数的应用题用减法计算(注意:用大的数减小的数)。

  7.关于提问题的题目,可以这样提问:

  ①……和……一共…….?

  ②……比……多多少/几……?

  ③……比……少多少/几……?

  第三单元:表内乘法(一)(重点)

  1.乘法的含义:乘法是求几个相同加数连加的和的简便算法。如:计算:2+2+2=6,用乘法算就是:2×3=6或3×2=6。乘号左右的两个数分别是加法算式中的相同加数和相同加数的个数。

  2.乘法算式的读法:读乘法算式时,要按照算式顺序来读。如:6×3=18读作:“6乘3等于18”。

  3.乘法算式中各部分的名称:在乘法算式中,乘号左右两边的数都叫做“乘数”,等号后面的得数叫做“积”。

  4.乘法算式所表示的意义:求几个相同加数的和,用乘法计算比较简单。一道乘法算式表示的就是几个相同加数连加的和。如:4×5表示5个4相加或4个5相加。

  5. 2—6的乘法口诀:

  2的乘法口诀:一二得二,二二得四

  3的乘法口诀:一三得三,二三得六,三三得九

  4的乘法口诀:一四得四,二四得八,三四十二,四四十六

  5的乘法口诀:一五得五,二五一十,三五十五,四五二十,五五二十五

  6的乘法口诀:一六得六,二六十二,三六十八,四六二十四,五六三十,六六三十六

  注意:一一得一

  第四单元:角的认识(重点)

  1.角有一个顶点,两条边。像红领巾、三角板、钟面、等实物上都有大大小小不同的角。

  2.角的大小与两条边的长短无关,只和两条边张开的"大小有关。角的两条边张口越大,角就越大;角的两条边张口越小,角就越小。

  3.角的画法:从一个点起,用尺子向不同的方向画两条边,就画成一个角。

  (注意:画完直角要标上直角符号)

  4.三角板上的3个角中,有1个是直角。正方形、长方形都有4个角,都是直角。

  5.要知道一个角是不是直角,可以用三角板上的直角比一比:顶点对顶点,一边对一边,再看另一边。

  6.三角板上的3个角中,有1个是直角。正方形、长方形都有4个角,都是直角。

  7.比直角小的角叫做锐角,比直角大的角叫做钝角。

  第五单元:表内除法(一)(重点)

  1.认识*均分:把一些物品分成几份,每份分得同样多,叫*均分。

  2.除法的意义:

  (1)把一些东西*均分成几份,求每份是多少,用除法计算,总数÷份数=每份数。

  (2)把一个数量按每份是多少分成一份,求能*均分成几份;用除法计算,

  总数÷每份数=份数。

  3.除法算式的读法:按从左到右的顺序读,“÷”读作除以,“=”读作等于,其他数字不变。如:8÷2 读作8除以2等于4。

  4.除法算式各部分名称:在除法算式中,除号前面的数叫做“被除数”;除号后面的数都叫做“除数”;等号后面的得数叫做“商”。就是:被除数÷除数=商。

  5.用乘法口诀求商:除以几就想和几有关的口诀。想:除数×商=被除数。

  第六单元:象形统计图和统计表

  1.统计数据的方法有:(1)列表统计法;(2)象形统计图;(3)画“正”字统计法。

  2.象形统计图1格表示1个单位,统计表中的数量是几就在象形统计图中涂几个小格。

  3.“正”字表示法,“正”表示数量5。

  第七单元:表内乘法和除法(二)(重点)

  1. 7—9的乘法口诀:

  7的乘法口诀:一七得七,二七十四,三七二十一,四七二十八,五*十五六七四十二,七七四十九

  8的乘法口诀:一八得八,二八十六,三八二十四,四八三十二,五八四十

  六八四十八,七八五十六,八八六十四

  9的乘法口诀:一九得九,二九十八,三九二十七,四九三十六,五九四十五,六九五十四,七九六十三,八_九七十二,九九八十一

  2.“求一个数的几倍是多少”用乘法计算,用:这个数×倍数

  如:2的3倍是多少?列式为:2×3=6。

  3.有几个相同加数,就是这个相同加数的几倍。如:3个 5,就是5的3倍。

  4.“求一个数是另一个数的几倍”也就是求“一个数里面有几个另一个数”,都用除法计算,用“一个数÷另一个数”。如:12是3的几倍?列式为:12÷3=4。

  5.在需要提出问题并解决时,可以提:

  ①加法的问题:求总数,“谁和谁一共是多少?”。

  ②减法的问题:进行比较。“谁比谁多多少?;“谁比谁少多少?”。

  ③除法的问题:有倍数关系的可以提出用除法计算的问题,“谁是谁的几倍?”,“是”字前写较大数,“是”字后写较小数。

  第八单元:数学广角

  1.一组图形的循环排列规律:①把最后的放在最前,其余的往后移。②把最前的放在最后,其余的往前移。

  2.数列的变化规律:①等差数列;②前两个数的和相加等于后一个;③倍数关系;④每个数都是两个相同因数相乘的积。

数学上册知识点3

  1、自然数整数的意义

  用来表示物体个数的1,2,3……叫做自然数。一个物体也没有,用0表示。0也是自然数它们都是整数。

  最小的自然数是0,没有的自然数。自然数的个数是无限的。

  2、计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。其中"一"是计数的基本单位。

  3、十进制计数法10个1是10,10个10是100……每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

  4、数位

  计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

  5、整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个"亿"或"万"字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。

  6、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

  7、万以上数的写法:

  (1)一个数含有万级和亿级,应从位写起,一级一级地往下写。

  (2)写数时哪一位上是几就在那一位上写几,遇到哪一位上一个单位也没有,就在那一位上写0占位。

  8、比较两个数的大小:

  (1)如果位数不同,位数多的那个数就大,位数少的那个数就小;

  (2)如果位数相同,就从位开始比较,位数大的那个数就大;如果第一位相同就看下一位,以此类推。

  9、整万、整亿数的改写:

  (1)改写成以"万"为单位的数,把万位后面的4个0去掉,加上一个"万"字即可。

  (2)改写成以"亿"为单位的数,把亿位后面的8个0去掉,加上一个"亿"字即可。

  10、近似数与准确数:

  有些数的前面有"约"字,都不是准确数,像这样的数我们称做为"近似数"。

  "四舍五入法":在取近似数的时候,按要求保留到哪一位,这一位后面的数称为"尾数"。如果尾数的位数字小于5,就把尾数去掉。如果尾数的位数字大于或等于5,就把尾数舍去并向它的前一位进"1",这种取近似数的方法叫做四舍五入法。

  "省略万位或亿位后面的尾数求近似数",就是用"四舍五入"法,把一个数精确(保留)到万位或亿位,求它的近似数。

  (1)用"万"作单位的近似数,应看千位上的数是几,再决定是"四舍"还是"五入"。

  (2)用"亿"作单位的近似数,就看千万位上的数是几,再决定是"四舍"还是"五入"。

  (3)不管是用"万"还是用"亿"作单位,写近似数时都要用约等号(≈)连接,末尾还要写上"万"字或"亿"字。

  11、求近似数和数的改写的相同点:求近似数和数的改写都是把一个较大的数表示成整"万"或整"亿"的数,后面都要加一个"万"字或"亿"字。

  不同点:求近似数是把一个数变成一个近似数,数的大小发生了变化;而数的改写只是把一个大数写成了以"万"或"亿"为单位的数,大小没有发生变化。

  12、数字编码。数不仅可以用来表示数量和顺序,还可以用来编码。编码中的数字代表着一定的意义。编码具有有序性。

数学上册知识点4

  第一章丰富的图形世界

  1、几何图形

  从实物中抽象出来的各种图形,包括立体图形和*面图形。

  立体图形:有些几何图形的各个部分不都在同一*面内,它们是立体图形。

  *面图形:有些几何图形的各个部分都在同一*面内,它们是*面图形。

  2、点、线、面、体

  (1)几何图形的组成

  点:线和线相交的地方是点,它是几何图形中最基本的图形。

  线:面和面相交的地方是线,分为直线和曲线。

  面:包围着体的是面,分为*面和曲面。

  体:几何体也简称体。

  (2)点动成线,线动成面,面动成体。xK b1。C o m

  3、常见的几何体及其特点

  长方体:有8个顶点,12条棱,6个面,且各面都是长方形(正方形是特殊的长方形),正方体是特殊的长方体。

  棱柱:上下两个面称为棱柱的底面,其它各面称为侧面,长方体是四棱柱。

  棱锥:一个面是多边形,其余各面是有一个公共顶点的三角形。

  圆柱:有上下两个底面和一个侧面(曲面),两个底面是半径相等的圆。圆柱的表面展开图是由两个相同的圆形和一个长方形连成。

  圆锥:有一个底面和一个侧面(曲面)。侧面展开图是扇形,底面是圆。

  球:由一个面(曲面)围成的几何体

  4、棱柱及其有关概念:

  棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

  侧棱:相邻两个侧面的交线叫做侧棱。

  n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

  5、正方体的*面展开图:11种

  6、截一个正方体:

  (1)用一个*面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

  注意:①、正方体只有六个面,所以截面最多有六条边,即截面边数最多的图形是六边形。 ②、长方体、棱柱的截面与正方体的截面有相似之处。

  (2)用*面截圆柱体,可能出现以下的几种情况。

  (3)用*面去截一个圆锥,能截出圆和三角形两种截面(还有其他截面,初中不予研究)

  (4)用*面去截球体,只能出现一种形状的截面——圆。w W w 。x K b 1 。c o M

  (5)需要记住的要点:

  几何体截面形状

  正方体三角形、正方形、长方形、梯形、五边形、六边形

  圆柱圆、长方形、(正方形)、……

  圆锥圆、三角形、……

  球圆

数学上册知识点5

  直线、射线、线段

  1、基本概念

  图形 直线 射线 线段

  端点个数 无 一个 两个

  表示法 直线a

  直线AB(BA) 射线AB 线段a

  线段AB(BA)

  作法叙述 作直线AB;

  作直线a 作射线AB 作线段a;

  作线段AB;

  连接AB

  延长叙述 不能延长 反向延长射线AB 延长线段AB;

  反向延长线段BA

  2、直线的性质

  经过两点有一条直线,并且只有一条直线.

  简单地:两点确定一条直线.

  3、画一条线段等于已知线段

  (1)度量法

  (2)用尺规作图法

  4、线段的大小比较方法

  (1)度量法

  (2)叠合法

  5、线段的中点(二等分点)、三等分点、四等分点等

  定义:把一条线段*均分成两条相等线段的点.

  符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM.

  6、线段的性质

  两点的所有连线中,线段最短.简单地:两点之间,线段最短.

  7、两点的距离

  连接两点的线段长度叫做两点的距离.

  8、点与直线的位置关系

  (1)点在直线上 (2)点在直线外.

  小编为大家提供的数学期中考必备直线知识点就到这里了,愿大家都能在学期努力,丰富自己,锻炼自己。


数学上册知识点5篇扩展阅读


数学上册知识点5篇(扩展1)

——初三数学上册知识点10篇

初三数学上册知识点1

  1、 必然事件、不可能事件、随机事件的区别

  2、概率

  一般地,在大量重复试验中,如果事件A发生的频率 会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(probability), 记作P(A)= p.

  注意:(1)概率是随机事件发生的可能性的大小的数量反映.

  (2)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.

  3、求概率的方法

  (1)用列举法求概率(列表法、画树形图法)

  (2)用频率估计概率:一大面,可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的.近似值,二者不能简单地等同.

初三数学上册知识点2

  1、必然事件、不可能事件、随机事件的区别

  2、概率

  一般地,在大量重复试验中,如果事件A发生的频率

  会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(probability), 记作P(A)=p.

  注意:(1)概率是随机事件发生的可能性的大小的数量反映。

  (2)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同。

  3、求概率的方法

  (1)用列举法求概率(列表法、画树形图法)

  (2)用频率估计概率:一大面,可用大量重复试验中事件发生频率来估计事件发生的概率。另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的`概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.

初三数学上册知识点3

  (三角形中位线的定理)

  三角形的中位线*行于三角形的第三边,并且等于第三边的一半。

  (*行四边形的性质)

  ①*行四边形的对边相等;

  ②*行四边形的对角相等;

  ③*行四边形的对角线互相*分。

  (矩形的性质)

  ①矩形具有*行四边形的一切性质;

  ②矩形的四个角都是直角;

  ③矩形的对角线相等。

  正方形的判定与性质

  1、判定方法:

  1邻边相等的矩形;

  2邻边垂直的菱形;

  3对角线垂直的矩形;

  4对角线相等的菱形;

  2、性质:

  1边:四边相等,对边*行;

  2角:四个角都相等都是直角,邻角互补;

  3对角线互相*分、垂直、相等,且每长对角线*分一组内角。

  等腰三角形的判定定理

  (等腰三角形的判定方法)

  1、有两条边相等的三角形是等腰三角形。

  2、判定定理:如果一个三角形有两个角相等,那么这个三角形是等腰三角形简称:等角对等边。

  角*分线:把一个角*分的射线叫该角的角*分线。

  定义中有几个要点要注意一下的,学习方法,就是角的角*分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角*分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角*分线就是到角两边距离相等的点

  性质定理:角*分线上的点到该角两边的距离相等

  判定定理:到角的两边距离相等的点在该角的角*分线上

  标准差与方差

  极差是什么:一组数据中数据与最小数据的差叫做极差,即极差=值—最小值。

  计算器——求标准差与方差的一般步骤:

  1、打开计算器,按“ON”键,按“MODE”“2”进入统计SD状态。

  2、在开始数据输入之前,请务必按“SHIFT”“CLR”“1”“=”键清除统计存储器。

  3、输入数据:按数字键输入数值,然后按“M+”键,就能完成一个数据的输入。如果想对此输入同样的数据时,还可在步骤3后按“SHIET”“;”,后输入该数据出现的频数,再按“M+”键。

  4、当所有的数据全部输入结束后,按“SHIFT”“2”,选择的是“标准差”,就可以得到所求数据的标准差;

  5、标准差的*方就是方差。

初三数学上册知识点4

  I.定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c

  a,b,c为常数,a≠0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大,则称y为x的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II.二次函数的三种表达式

  一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

  顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]

  交点式:y=a(x-x)(x-x ) [仅限于与x轴有交点A(x ,0)和 B(x,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a

  III.二次函数的图像

  在*面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

初三数学上册知识点5

  知识点一: 二次根式的概念

  形如a(a0)的式子叫做二次根式。

  注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有*方根,所以a0是a为二次根式的前提条件,如5,(x2+1),

  (x-1) (x1)等是二次根式,而(-2),(-x2-7)等都不是二次根式。

  知识点二:取值范围

  1. 二次根式有意义的条件:由二次根式的意义可知,当a0时a有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。

  2. 二次根式无意义的条件:因负数没有算术*方根,所以当a﹤0时,a没有意义。

  知识点三:二次根式a(a0)的非负性

  a(a0)表示a的算术*方根,也就是说,a(a0)是一个非负数,即0(a0)。

  注:因为二次根式a表示a的算术*方根,而正数的算术*方根是正数,0的算术*方根是0,所以非负数(a0)的算术*方根是非负数,即0(a0),这个性质也就是非负数的算术*方根的性质,和绝对值、偶次方类似。这个性质在解答题目时应用较多,如若a+b=0,则a=0,b=0;若a+|b|=0,则a=0,b=0;若a+b2=0,则a=0,b=0。

  知识点四:二次根式(a) 的性质

  (a)2=a(a0)

  文字语言叙述为:一个非负数的算术*方根的*方等于这个非负数。

  注:二次根式的性质公式(a)2=a(a0)是逆用*方根的定义得出的结论。上面的公式也可以反过来应用:若a0,则

  a=(a)2,如:2=(2)2,1/2=(1/2)2.

  知识点五:二次根式的性质

  a2=|a|

  文字语言叙述为:一个数的*方的算术*方根等于这个数的绝对值。

  注:

  1、化简a2时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即a2=|a|=a (a若a是负数,则等于a的相反数-a,即a2=|a|=-a (a﹤0);

  2、a2中的a的取值范围可以是任意实数,即不论a取何值,a2一定有意义;

  3、化简a2时,先将它化成|a|,再根据绝对值的意义来进行化简。

  知识点六:(a)2与a2的异同点

  1、不同点:(a)2与a2表示的意义是不同的,(a)2表示一个非负数a的算术*方根的*方,而a2表示一个实数a的*方的算术*方根;在(a)2中,而a2中a可以是正实数,0,负实数。但(a)2与a2都是非负数,即(a)20,a20。因而它的运算的结果是有差别的,(a)2=a(a0) ,而a2=|a|。

  2、相同点:当被开方数都是非负数,即a0时,(a)2=a﹤0时,(a)2无意义,而a2=|a|=-a.

初三数学上册知识点6

  第21章二次根式

  1、二次根式:一般地,式子叫做二次根式。

  注意:

  (1)若这个条件不成立,则不是二次根式;

  (2)是一个重要的非负数,即; ≥0。

  2、重要公式:

  3、积的算术*方根:

  积的算术*方根等于积中各因式的算术*方根的积;

  4、二次根式的乘法法则:。

  5、二次根式比较大小的方法:

  (1)利用近似值比大小;

  (2)把二次根式的系数移入二次根号内,然后比大小;

  (3)分别*方,然后比大小。

  6、商的算术*方根:,

  商的算术*方根等于被除式的算术*方根除以除式的算术*方根。

  7、二次根式的除法法则:

  分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。

  8、最简二次根式:

  (1)满足下列两个条件的二次根式,叫做最简二次根式,

  ①被开方数的因数是整数,因式是整式,

  ②被开方数中不含能开的尽的因数或因式;

  (2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;

  (3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;

  (4)二次根式计算的最后结果必须化为最简二次根式。

  9、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。

  10、二次根式的混合运算:

  (1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;

  (2)二次根式的.运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等。

  第22章一元二次方程

  1、一元二次方程的一般形式:

  a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c;其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式。

  2、一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开*方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少。

  3。一元二次方程根的判别式:当ax2+bx+c=0

  (a≠0)时,Δ=b2—4ac叫一元二次方程根的判别式。请注意以下等价命题:

  Δ>0 <=>有两个不等的实根;

  Δ=0 <=>有两个相等的实根;Δ<0 <=>无实根;

  4。*均增长率问题————————应用题的类型题之一(设增长率为x):

  (1)第一年为a ,第二年为a(1+x) ,第三年为a(1+x)2。

  (2)常利用以下相等关系列方程:第三年=第三年或第一年+第二年+第三年=总和。

  第23章旋转

  1、概念:

  把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角。

  旋转三要素:旋转中心、旋转方面、旋转角

  2、旋转的性质:

  (1)旋转前后的两个图形是全等形;

  (2)两个对应点到旋转中心的距离相等

  (3)两个对应点与旋转中心的连线段的夹角等于旋转角

  3、中心对称:

  把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。

  这两个图形中的对应点叫做关于中心的对称点。

  4、中心对称的性质:

  (1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所*分。

  (2)关于中心对称的两个图形是全等图形。

  5、中心对称图形:

  把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

初三数学上册知识点7

  1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是( ).其中( )叫做二次项,( )叫做一次项,( )叫做常数项;( )叫做二次项的系数,( )叫做一次项的系数.

  2.易错知识辨析:

  (1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中 .

  (2)用公式法和因式分解的方法解方程时要先化成一般形式.

  (3)用配方法时二次项系数要化1.

  (4)用直接开*方的方法时要记得取正、负.

初三数学上册知识点8

  矩形知识点

  1、矩形的概念

  有一个角是直角的*行四边形叫做矩形。

  2、矩形的性质

  (1)具有*行四边形的一切性质

  (2)矩形的四个角都是直角

  (3)矩形的对角线相等

  (4)矩形是轴对称图形

  3、矩形的判定

  (1)定义:有一个角是直角的*行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形

  (3)定理2:对角线相等的*行四边形是矩形

  4、矩形的面积:S矩形=长×宽=ab

  正方形知识点

  1、正方形的概念

  有一组邻边相等并且有一个角是直角的*行四边形叫做正方形。

  2、正方形的性质

  (1)具有*行四边形、矩形、菱形的一切性质;

  (2)正方形的四个角都是直角,四条边都相等;

  (3)正方形的两条对角线相等,并且互相垂直*分,每一条对角线*分一组对角;

  (4)正方形是轴对称图形,有4条对称轴;

  (5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;

  (6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。

  3、正方形的判定

  (1)判定一个四边形是正方形的主要依据是定义,途径有两种:

  先证它是矩形,再证有一组邻边相等。

  先证它是菱形,再证有一个角是直角。

  (2)判定一个四边形为正方形的一般顺序如下:

  先证明它是*行四边形;

  再证明它是菱形(或矩形);

  最后证明它是矩形(或菱形)。

  圆知识点

  圆的面积s=π×r×r

  其中,π是周围率,约等于3.14

  r是圆的半径。

  圆的周长计算公式为:C=2πR.C代表圆的周长,r代表圆的半径。圆的面积公式为:S=πR2(R的*方).S代表圆的面积,r为圆的半径。

  椭圆周长计算公式

  椭圆周长公式:L=2πb+4(a-b)

  椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。

  椭圆面积计算公式

  椭圆面积公式:S=πab

  椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

  以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。

  对数公式

  对数公式是数学中的一种常见公式,如果a^x=N(a>0,且a≠1),则x叫做以a为底N的对数,记做x=log(a)(N),其中a要写于log右下。其中a叫做对数的底,N叫做真数。通常我们将以10为底的对数叫做常用对数,以e为底的对数称为自然对数。

  数学学习技巧

  1.求教与自学相结合

  在学习过程中,即要争取教师的指导和帮助,但是又不能过分依赖教师, 必须自己主动地去学习、去探索、去获取,应该在自己认真学习和研究的基础上去寻求教师和同学的帮助。

  2.学习与思考相结合

  在学习过程中,对课本的内容要认真研究,提出疑问,追本究源。对每一个概念、公式、定理都要弄清其来龙去脉、前因后果、内在联系,以及蕴含于推导过程中的数学思想和方法。在解决问题时,要尽量采用不同的途径和方法,要克服那种死守书本、机械呆板、不知变通的学习方法。

  3.学用结合,勤于实践

  在学习过程中,要准确地掌握抽象概念的本质含义,了解从实际模型中抽象为理论的演变过程。对所学理论知识,要在更大范围内寻求它的具体实例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。

  4.博观约取,由博返约

  课本是获得知识的主要来源,但不是唯一的来源。在学习过程中,除了认真研究课本以外,还要阅读有关的课外资料,来扩大知识领域。同时在广泛阅读的基础上,进行认真研究,掌握其知识结构。

  5.既有模仿,又有创新

  模仿是数学学习中不可缺少的学习方法,但是决不能机械地模仿,应该在消化理解的基础上,开动脑筋,提出自己的`见解和看法,而不拘泥于已有的框框,不囿于现成的模式。

  6.及时复习增强记忆

  课堂上学习的内容,必须当天消化,要先复习,后做练习,复习工作必须经常进行,每一单元结束后,应将所学知识进行概括整理,使之系统化、深刻化。

  7.总结学习经验,评价学习效果

  学习中的总结和评价有利于知识体系的建立、解题规律的掌握、学习方法与态度的调整和评判能力的提高。在学习过程中,应注意总结听课、阅读和解题中的收获和体会

初三数学上册知识点9

  1、正方形的概念

  有一组邻边相等并且有一个角是直角的*行四边形叫做正方形。

  2、正方形的性质

  (1)具有*行四边形、矩形、菱形的一切性质;

  (2)正方形的四个角都是直角,四条边都相等;

  (3)正方形的两条对角线相等,并且互相垂直*分,每一条对角线*分一组对角;

  (4)正方形是轴对称图形,有4条对称轴;

  (5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;

  (6)正方形的一条对角线上的一点到另一条对角线的`两端点的距离相等。

  3、正方形的判定

  (1)判定一个四边形是正方形的主要依据是定义,途径有两种:

  先证它是矩形,再证有一组邻边相等。

  先证它是菱形,再证有一个角是直角。

  (2)判定一个四边形为正方形的一般顺序如下:

  先证明它是*行四边形;

  再证明它是菱形(或矩形);

  最后证明它是矩形(或菱形)。

初三数学上册知识点10

  1、矩形的概念

  有一个角是直角的*行四边形叫做矩形。

  2、矩形的性质

  (1)具有*行四边形的一切性质

  (2)矩形的四个角都是直角

  (3)矩形的对角线相等

  (4)矩形是轴对称图形

  3、矩形的判定

  (1)定义:有一个角是直角的*行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形

  (3)定理2:对角线相等的*行四边形是矩形

  4、矩形的面积:S矩形=长×宽=ab


数学上册知识点5篇(扩展2)

——初三数学上册知识点10篇

初三数学上册知识点1

  1、必然事件、不可能事件、随机事件的区别

  2、概率

  一般地,在大量重复试验中,如果事件A发生的频率

  会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(probability), 记作P(A)=p.

  注意:(1)概率是随机事件发生的可能性的大小的数量反映。

  (2)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同。

  3、求概率的方法

  (1)用列举法求概率(列表法、画树形图法)

  (2)用频率估计概率:一大面,可用大量重复试验中事件发生频率来估计事件发生的概率。另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.

初三数学上册知识点2

  1、 必然事件、不可能事件、随机事件的区别

  2、概率

  一般地,在大量重复试验中,如果事件A发生的频率 会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(probability), 记作P(A)= p.

  注意:(1)概率是随机事件发生的可能性的大小的数量反映.

  (2)概率是事件在大量重复试验中频率逐渐稳定到的.值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.

  3、求概率的方法

  (1)用列举法求概率(列表法、画树形图法)

  (2)用频率估计概率:一大面,可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.

初三数学上册知识点3

  I.定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c

  a,b,c为常数,a≠0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大,则称y为x的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II.二次函数的三种表达式

  一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

  顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]

  交点式:y=a(x-x)(x-x ) [仅限于与x轴有交点A(x ,0)和 B(x,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a

  III.二次函数的图像

  在*面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

初三数学上册知识点4

  1、 二次函数的一般形式:y=ax2+bx+c。(a0)

  2、 关于二次函数的几个概念:二次函数的图象是抛物线,所以也叫抛物线y=ax2+bx+c;抛物线关于对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其中c叫二次函数在y轴上的截距, 即二次函数图象必过(0,c)点。

  3、 y=ax2 (a0)的特性:当y=ax2+bx+c (a0)中的b=0且c=0时二次函数为y=ax2 (a这个二次函数是一个特殊的二次函数,有下列特性:(1)图象关于y轴对称;(2)顶点(0,0);

  4、求二次函数的解析式:已知二次函数图象上三点的坐标,可设解析式y=ax2+bx+c,并把这三点的坐标代入,解关于a、b、c的三元一次方程组,求出a、b、c的值, 从而求出解析式———————待定系数法。

  5、二次函数的顶点式: y=a(x—h)2+k (a 由顶点式可直接得出二次函数的顶点坐标(h, k),对称轴方程 x=h 和函数的最值 y最值= k。

初三数学上册知识点5

  第21章二次根式

  1、二次根式:一般地,式子叫做二次根式。

  注意:

  (1)若这个条件不成立,则不是二次根式;

  (2)是一个重要的非负数,即; ≥0。

  2、重要公式:

  3、积的算术*方根:

  积的算术*方根等于积中各因式的算术*方根的积;

  4、二次根式的乘法法则:。

  5、二次根式比较大小的方法:

  (1)利用近似值比大小;

  (2)把二次根式的系数移入二次根号内,然后比大小;

  (3)分别*方,然后比大小。

  6、商的算术*方根:,

  商的算术*方根等于被除式的算术*方根除以除式的算术*方根。

  7、二次根式的除法法则:

  分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。

  8、最简二次根式:

  (1)满足下列两个条件的二次根式,叫做最简二次根式,

  ①被开方数的因数是整数,因式是整式,

  ②被开方数中不含能开的尽的因数或因式;

  (2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;

  (3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;

  (4)二次根式计算的最后结果必须化为最简二次根式。

  9、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。

  10、二次根式的混合运算:

  (1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;

  (2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等。

  第22章一元二次方程

  1、一元二次方程的一般形式:

  a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c;其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式。

  2、一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开*方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少。

  3。一元二次方程根的判别式:当ax2+bx+c=0

  (a≠0)时,Δ=b2—4ac叫一元二次方程根的判别式。请注意以下等价命题:

  Δ>0 <=>有两个不等的实根;

  Δ=0 <=>有两个相等的实根;Δ<0 <=>无实根;

  4。*均增长率问题————————应用题的类型题之一(设增长率为x):

  (1)第一年为a ,第二年为a(1+x) ,第三年为a(1+x)2。

  (2)常利用以下相等关系列方程:第三年=第三年或第一年+第二年+第三年=总和。

  第23章旋转

  1、概念:

  把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角。

  旋转三要素:旋转中心、旋转方面、旋转角

  2、旋转的性质:

  (1)旋转前后的两个图形是全等形;

  (2)两个对应点到旋转中心的距离相等

  (3)两个对应点与旋转中心的连线段的夹角等于旋转角

  3、中心对称:

  把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。

  这两个图形中的对应点叫做关于中心的对称点。

  4、中心对称的性质:

  (1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所*分。

  (2)关于中心对称的两个图形是全等图形。

  5、中心对称图形:

  把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

初三数学上册知识点6

  第21章二次根式

  1、二次根式:一般地,式子叫做二次根式。

  注意:

  (1)若这个条件不成立,则不是二次根式;

  (2)是一个重要的非负数,即; ≥0。

  2、重要公式:

  3、积的算术*方根:

  积的算术*方根等于积中各因式的算术*方根的积;

  4、二次根式的乘法法则:。

  5、二次根式比较大小的方法:

  (1)利用近似值比大小;

  (2)把二次根式的系数移入二次根号内,然后比大小;

  (3)分别*方,然后比大小。

  6、商的算术*方根:,

  商的算术*方根等于被除式的算术*方根除以除式的算术*方根。

  7、二次根式的除法法则:

  分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。

  8、最简二次根式:

  (1)满足下列两个条件的二次根式,叫做最简二次根式,

  ①被开方数的因数是整数,因式是整式,

  ②被开方数中不含能开的尽的因数或因式;

  (2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;

  (3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;

  (4)二次根式计算的最后结果必须化为最简二次根式。

  9、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。

  10、二次根式的混合运算:

  (1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;

  (2)二次根式的.运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等。

  第22章一元二次方程

  1、一元二次方程的一般形式:

  a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c;其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式。

  2、一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开*方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少。

  3。一元二次方程根的判别式:当ax2+bx+c=0

  (a≠0)时,Δ=b2—4ac叫一元二次方程根的判别式。请注意以下等价命题:

  Δ>0 <=>有两个不等的实根;

  Δ=0 <=>有两个相等的实根;Δ<0 <=>无实根;

  4。*均增长率问题————————应用题的类型题之一(设增长率为x):

  (1)第一年为a ,第二年为a(1+x) ,第三年为a(1+x)2。

  (2)常利用以下相等关系列方程:第三年=第三年或第一年+第二年+第三年=总和。

  第23章旋转

  1、概念:

  把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角。

  旋转三要素:旋转中心、旋转方面、旋转角

  2、旋转的性质:

  (1)旋转前后的两个图形是全等形;

  (2)两个对应点到旋转中心的距离相等

  (3)两个对应点与旋转中心的连线段的夹角等于旋转角

  3、中心对称:

  把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。

  这两个图形中的对应点叫做关于中心的对称点。

  4、中心对称的性质:

  (1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所*分。

  (2)关于中心对称的两个图形是全等图形。

  5、中心对称图形:

  把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

初三数学上册知识点7

  1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是( ).其中( )叫做二次项,( )叫做一次项,( )叫做常数项;( )叫做二次项的系数,( )叫做一次项的系数.

  2.易错知识辨析:

  (1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中 .

  (2)用公式法和因式分解的方法解方程时要先化成一般形式.

  (3)用配方法时二次项系数要化1.

  (4)用直接开*方的方法时要记得取正、负.

初三数学上册知识点8

  1、 必然事件、不可能事件、随机事件的区别

  2、概率

  一般地,在大量重复试验中,如果事件A发生的频率 会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(probability), 记作P(A)= p.

  注意:(1)概率是随机事件发生的可能性的大小的数量反映.

  (2)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.

  3、求概率的方法

  (1)用列举法求概率(列表法、画树形图法)

  (2)用频率估计概率:一大面,可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.

初三数学上册知识点9

  一、圆周角定理

  在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

  ①定理有三方面的意义:

  a.圆心角和圆周角在同一个圆或等圆中;(相关知识点 如何证明四点共圆 )

  b.它们对着同一条弧或者对的两条弧是等弧

  c.具备a、b两个条件的圆周角都是相等的,且等于圆心角的一半.

  ②因为圆心角的度数与它所对的弧的度数相等,所以圆周角的度数等于它所对的弧的度数的一半.

  二、圆周角定理的推论

  推论1:同弧或等弧所对的圆周角相等,同圆或等圆中,相等的圆周角所对的弧也相等

  推论2:半圆(或直径)所对的圆周角等于90°;90°的圆周角所对的弦是直径

  推论3:如果三角形一边的中线等于这边的一半,那么这个三角形是直角三角形

  三、推论解释说明

  圆周角定理在九年级数学知识点中属于几何部分的重要内容。

  ①推论1是圆中证明角相等最常用的方法,若将推论1中的“同弧或等弧”改为“同弦或等弦”结论就不成立.因为一条弦所对的圆周角有两个.

  ②推论2中“相等的圆周角所对的弧也相等”的前提条件是“在同圆或等圆中”

  ③圆周角定理的推论2的应用非常广泛,要把直径与90°圆周角联系起来,一般来说,当条件中有直径时,通常会作出直径所对的圆周角,从而得到直角三角形,为进一步解题创造条件

  ④推论3实质是直角三角形的斜边上的中线等于斜边的一半的逆定理.

初三数学上册知识点10

  矩形知识点

  1、矩形的概念

  有一个角是直角的*行四边形叫做矩形。

  2、矩形的性质

  (1)具有*行四边形的一切性质

  (2)矩形的四个角都是直角

  (3)矩形的对角线相等

  (4)矩形是轴对称图形

  3、矩形的判定

  (1)定义:有一个角是直角的*行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形

  (3)定理2:对角线相等的*行四边形是矩形

  4、矩形的面积:S矩形=长×宽=ab

  正方形知识点

  1、正方形的概念

  有一组邻边相等并且有一个角是直角的*行四边形叫做正方形。

  2、正方形的性质

  (1)具有*行四边形、矩形、菱形的一切性质;

  (2)正方形的四个角都是直角,四条边都相等;

  (3)正方形的两条对角线相等,并且互相垂直*分,每一条对角线*分一组对角;

  (4)正方形是轴对称图形,有4条对称轴;

  (5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;

  (6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。

  3、正方形的判定

  (1)判定一个四边形是正方形的主要依据是定义,途径有两种:

  先证它是矩形,再证有一组邻边相等。

  先证它是菱形,再证有一个角是直角。

  (2)判定一个四边形为正方形的一般顺序如下:

  先证明它是*行四边形;

  再证明它是菱形(或矩形);

  最后证明它是矩形(或菱形)。

  圆知识点

  圆的面积s=π×r×r

  其中,π是周围率,约等于3.14

  r是圆的半径。

  圆的周长计算公式为:C=2πR.C代表圆的周长,r代表圆的半径。圆的面积公式为:S=πR2(R的*方).S代表圆的面积,r为圆的半径。

  椭圆周长计算公式

  椭圆周长公式:L=2πb+4(a-b)

  椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。

  椭圆面积计算公式

  椭圆面积公式:S=πab

  椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

  以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。

  对数公式

  对数公式是数学中的一种常见公式,如果a^x=N(a>0,且a≠1),则x叫做以a为底N的对数,记做x=log(a)(N),其中a要写于log右下。其中a叫做对数的底,N叫做真数。通常我们将以10为底的对数叫做常用对数,以e为底的对数称为自然对数。

  数学学习技巧

  1.求教与自学相结合

  在学习过程中,即要争取教师的指导和帮助,但是又不能过分依赖教师, 必须自己主动地去学习、去探索、去获取,应该在自己认真学习和研究的基础上去寻求教师和同学的帮助。

  2.学习与思考相结合

  在学习过程中,对课本的内容要认真研究,提出疑问,追本究源。对每一个概念、公式、定理都要弄清其来龙去脉、前因后果、内在联系,以及蕴含于推导过程中的数学思想和方法。在解决问题时,要尽量采用不同的途径和方法,要克服那种死守书本、机械呆板、不知变通的学习方法。

  3.学用结合,勤于实践

  在学习过程中,要准确地掌握抽象概念的本质含义,了解从实际模型中抽象为理论的演变过程。对所学理论知识,要在更大范围内寻求它的具体实例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。

  4.博观约取,由博返约

  课本是获得知识的主要来源,但不是唯一的来源。在学习过程中,除了认真研究课本以外,还要阅读有关的课外资料,来扩大知识领域。同时在广泛阅读的基础上,进行认真研究,掌握其知识结构。

  5.既有模仿,又有创新

  模仿是数学学习中不可缺少的学习方法,但是决不能机械地模仿,应该在消化理解的基础上,开动脑筋,提出自己的`见解和看法,而不拘泥于已有的框框,不囿于现成的模式。

  6.及时复习增强记忆

  课堂上学习的内容,必须当天消化,要先复习,后做练习,复习工作必须经常进行,每一单元结束后,应将所学知识进行概括整理,使之系统化、深刻化。

  7.总结学习经验,评价学习效果

  学习中的总结和评价有利于知识体系的建立、解题规律的掌握、学习方法与态度的调整和评判能力的提高。在学习过程中,应注意总结听课、阅读和解题中的收获和体会。


数学上册知识点5篇(扩展3)

——小学数学上册知识点

小学数学上册知识点1

  一、读数、写数。

  1.读20以内的数。

  顺数:从小到大的顺序0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

  倒数:从大到小的顺序20 19 18 17······

  单数:1、3、5、7、9······

  双数:2、4、6、8、10······

  (注:0既不是单数,也不是双数,0是偶数。在生活中说单双数,在数学中说奇偶数。)

  2.两位数

  (1)我们生活中经常遇到十个物体为一个整体的情况,实际上十个“1”就是一个“10”,一个“10”就是十个“1”。

  如:A:11里有(1)个十和(1)个一;

  11里有(11)个一。

  12里有(1)个十和(2)个一;

  12里有(12)个一13里有(1)个十和(3)个一;

  13里有(13)个一14里有(1)个十和(4)个一;

  14里有(14)个一15里有(1)个十和(5)个一;

  15里有(15)个一······

  19里有(1)个十和(9)个一;

  或者说,19里有(19)个一20里有(2)个十;

  20里有(20)个一B:看数字卡片(11~20),说出卡片上的数是由几个十和几个一组成的。

  (2)在计数器上,从右边起第一位是什么位?(个位)第2位是什么位?(十位)个位上的1颗珠子表示什么?(表示1个一)十位上的1颗珠子表示什么?(表示1个十)

  (3)先读11、12、13、14、15、16、17、18、19、20,再写出来。

  如:14,读作:十四,写作:14。个位上是4,表示4个一,十位上数字是1,表示1个十。

  二、比较大小和第几。

  1.比较大小

  例如,给数字娃娃排队:5、6、10、3、20、17,可以按从大到小的顺序排列,也可以按从小到大的顺序排列。

  (注意做题时,写一个数字,划去一个,做到不重不漏。)

  2.任意取20以内的两个数,能够用谁比谁大或谁比谁小说一句话。

  如:16比15大,写出来就是16>159比13小,写出来就是9<133、“比”字的用法

  看“比”字的后面是谁,比几大1就要在几的基础上加1,比几小1就要在几的基础上减1。

  如:比5小2的数是(3),比4多3的数是(7)。

  3.几和第几

  △▲▲★△☆☆△△△▲★★★☆★

  观察图,说说有几个图形?(16个图形)从左数第几位是什么?从右数第几位是什么?把左边三个圈起来;把右边第2个圈起来。

  (复习此类知识时,分清左右,同时确定方向;知道几个和第几个的区别。)

  4.相邻数

  2的`前面是1,2的后面是3,2再添上1就是3,3再去掉1就是2,与2相邻的数是1和3。

  3的前面是2,3的后面是4,3再添上1就是4,4再去掉1就是3,与3相邻的数是2和4。······

  20的前面是19,20的后面是21,······,与20相邻的数是19和21。

  三、比一比

  1.比较两个事物的大小、多少、长短、高矮、轻重等,要以其中的一个事物作为参照,或者说以其中的一个事物作为标准,然后再比较,这样就能说另一个事物比作为标准的那个事物大或者小、多或少等。

  比长短:常用的方法注意要一端对齐,也可以采用数格比较,或对称比较。比高矮:注意在同一*面上去比较。比多少:运用一一对应原则。

  2.三个事物比较,可以先两个两个的比较。然后根据比较的结果,得出三个事物比较的结论。

  如:A比B重,B比C重,那么可以得到A比C重。A最重,C最轻。

  A比B重,A比C重,只能得到A最重,还要比较B和C,才知道谁最轻。


数学上册知识点5篇(扩展4)

——五年级数学上册知识点10篇

五年级数学上册知识点1

  一、小数乘法的计算方法

  先按整数乘法算出积

  再给积点上小数点

  二、点小数点的方法:

  看因数中一共有几位小数,就从积的右边起数几位,点上小数点。

  乘得的积的小数点位数不够,就要用0补足,再点小数点。

  一个数(0除外)乘以大于1的数,积比原来的数大。

  一个数(0除外)乘以小于1的数,数比原来的数小。

  三、积的近似数

  用四舍五入法保留一定的小数位数。

  四舍五入法:小于5,把它和右边的.数全舍去,改写成0

  大于5,向前进1,再把它和右面的数全舍去,改写成0

  由于小数的末尾去掉0和加上0,小数的大小不变,所以取小数的近似数时不用把数改写成0,直接去掉。

  2.205≈2 (保留整数)

  2.205≈2.2 (保留一位小数)

  2.205≈2.21 (保留两位小数)

  四、小数的四则运算顺序跟整数是一样的。

  1)从左往右算

  2)先算乘除,再算加减

  3)有括号的先算括号内

  4)不用算的先抄下来

  整数乘法的交换律、结合律和分配律,对于小数乘法也适用。

  乘法交换律:交换两个因数的位置,积不变。

  a×b=b×a

  乘法结合律:先乘前两个数,或者先乘后两个数,积不变

  (a×b)×c=a×(b×c)

  乘法分配律:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。

  (a+b)×c=a×c+b×c

  扩展:

  (a+b+c)×d=a×d+b×d+c×d

  数学怎么比较分数大小?

  (1)分母相同的两个分数,分子大的分数比较大。

  (2)分子相同的两个分数,分母小的分子比较大。

  (3)什么是真分数?

  分子比分母小的分数叫真分数。

  (4)什么是假分数?

  分子比分母大或者分子和分母相等的分数叫假分数。

  (5)什么是带分数?

  由整分数和真分数合成的数通常叫带分数。

  (6)什么是分数的基本性质?

  分数的分子和分母同时乘或除以相同的数(0除外),分数大小不变,这就是分数的基本性质。

  (7)什么是约分?

  把一个分数化成同它相等,但分子、分母都比较小的数叫做约分。

  (8)什么是最简分数?

  分子、分母是互质数的分数叫最简分数。

  小学数学乘法法则

  1.一位数乘法法则

  整数乘法低位起,一位数乘法一次积。

  个位数乘得若干一,积的末位对个位。

  计算准确对好位,乘法口诀是根据。

  2.两位数乘法法则

  整数乘法低位起,两位数乘法两次积。

  个位数乘得若干一,积的末位对个位。

  十位数乘得若干十,积的末位对十位。

  计算准确对好位,两次乘积加一起。

  3.多位数乘法法则

  整数乘法低位起,几位数乘法几次积。

  个位数乘得若干一,积的末位对个位。

  十位数乘得若干十,积的末位对十位。

  百位数乘得若干百,积的末位对百位

  计算准确对好位,几次乘积加一起。

  4.因数末尾有0的乘法法则

  因数末尾若有0,写在后面先不乘,

  乘完积补上0,有几个0写几个0。

五年级数学上册知识点2

  1.探索小数乘法、除法的计算方法,能正确进行笔算,并能对其中的.算理做出合理的解释;

  2.会用“四舍五入”法截取积是小数的近似值;培养从不同角度观察,分析事物的能力;

  3.理解用字母表示数的意义和作用;

  4.理解简易方程的意思及其解法;

  5.在理解的基础上掌握*行四边形面积的计算公式,并会运用公式正确地计算*行四边形的面积。

  学习难点:

  6.能正确进行乘号的简写,略写;小数乘法的计算法则;

  7.小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在前面用0补足;

  8.除数是整数的小数除法的计算方法;理解商的小数点要与被除数的小数点对齐的道理;

  9.构建初步的空间想象力;

  10.用字母表示数的意义和作用;

  11.多边形面积的计算。

五年级数学上册知识点3

  列方程解应用题的方法:

  (1)综合法

  先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种思维过程,其思考方向是从已知到未知。

  (2)分析法

  先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

  列方程解应用题的范围:

  小学范围内常用方程解的应用题:

  (1)一般应用题;

  (2)和倍、差倍问题;

  (3)几何形体的周长、面积、体积计算;

  (4)分数、百分数应用题;

  (5)比和比例应用题。

  *行四边形的"面积公式:

  底×高(推导方法如图);如用“h”表示高,“a”表示底,“S”表示*行四边形面积,则S*行四边形=ah

  三角形面积公式:

  S△=1/2xah(a是三角形的底,h是底所对应的高)

  梯形面积公式:

  (1)梯形的面积公式:(上底+下底)×高÷2.

  用字母表示:(a+b)×h÷2

  (2)另一计算公式:中位线×高

  用字母表示:l·h

  (3)对角线互相垂直的梯形:对角线×对角线÷2.

五年级数学上册知识点4

  第一单元:小数乘法

  一、小数乘整数

  1.

推荐访问:

本文标题:数学上册知识点五篇(范例推荐)
链接地址:http://www.ylwt22.com/gongwenfanwen/2023/0113/209203.html

版权声明:
1.十号范文网的资料来自互联网以及用户的投稿,用于非商业性学习目的免费阅览。
2.《数学上册知识点五篇(范例推荐)》一文的著作权归原作者所有,仅供学习参考,转载或引用时请保留版权信息。
3.如果本网所转载内容不慎侵犯了您的权益,请联系我们,我们将会及时删除。

十号范文网 |
Copyright © 2018-2024 十号范文网 Inc. All Rights Reserved.十号范文网 版权所有
本站部分资源和信息来源于互联网,如有侵犯您的权益,请尽快联系我们进行处理,谢谢!备案号:粤ICP备18086540号