图形与几何教学研究,心得体会
免费
分享
创新
几何与图形教学心得体会
(一)、激发学习兴趣,提供现实情境。
空间与图形的教学,应当从学生熟悉的生活环境出发,小学生尽管具备了一定的生活经验,但他们对周围的各种事物、现象有很强的好奇心。所以在教学中,应抓住学生的好奇心,根据教材的特点,结合学生的生活实际,把生活经验数学化,把数学问题生活化,让学生在这样的情境中主动地学习。
(二)、自主探索、合作交流,促进学生学习方式的转变。
在教学中,应为学生提供合作和交流的机会,不应简单地、机械地让学生模仿、记忆教师和书本上的语言。在教学中还要注意在操作过程中引导学生进行思考。
(三)、发展空间观念,培养创新意识。
空间观念是创新精神所需的基本要素之一,所以《标准》把空间观念作为义务教育阶段数学学习内容的核心概念之一,把建立初步的空间观念作为数学方面的一个重要目标。如“位置与顺序”一课,结合生动有趣的情境或活动,让学生体会前、后、上、下、左、右的位置与顺序,会用前、后、上、下、左、右描述物体的相对位置,建立初步的空间观念。又如“认识物体”一课中的练习动手搭出你喜欢的东西,使学生的想像力和创造性得到自由发挥,并能感受复杂物体的形状与简单几何体之间的联系。
(四)、不断反思教学设计、教学过程,更好地促进教学。
关注学生的学习过程,关注学生在数学活动中所表现出来的情感与态度,如在“观察与测量”一课中,组织学生测量课桌的长度,他们可能不用标准的测量工具,而是用铅笔、绳子„„作为测量工具,于是学生体会到统一测量单位的必要性。
通过对以上几个要点的把握,让学生在轻松、愉快的氛围中体验数学,探索学习。使我明白了空间与图形是小学数学四个知识板块中的第二个版块,主要涉及现实生活中的物体、几何体和平面图形的形状、大小、位置关系及其变换。
小学阶段学习“空间与图形”有着非常重要的意义。它可以帮助孩子们更好地认知和理解人类赖以生存的空间,因为孩子们最先感知的是三维世界, 是“空间图形”。他们认识周围世界的事物 , 就需要描述事物的形状、大小 , 选择
免费
分享
创新
恰当的方式表述事物之间的关系。而直观图形、几何模型以及几何图形的性质是准确描述现实世界空间关系, 解决学习、生活和工作中各种问题的必备工具。它还可以帮助学生获得必需的知识和技能, 更重要的是:还可以发展学生的空间观念,培养他们的创新精神和实践能力。
“空间与图形”的内容,与我们的生活有着千丝万缕的联系,所以我们在教学中要善于挖掘题材,让学生能综合利用所学知识和技能解决一些实际问题,形成解决问题的一些基本策略。
资料来源:http://www.dawendou.com/data/xdth/
面积的初步了解
物体的表面或封闭图形的大小,叫做它们的面积。
“面积”这一知识属于《数学课程标准》中空间与图形领域的内容。新课标中强调:在教学中,应注重使学生通过观察、操作、推理等手段,逐步认识简单几何体和平面图形的形状、大小、位置关系及变换;
应注重通过观察物体、认识方向、制作模型、设计图案等活动,发展学生的空间观念。
“面积”的概念是学生学习几何形体的基础,因此要让学生在具体生动的情境中感悟和理解这一概念学习的重要性和必要性。因做到以下几点:
一、数学课堂教学紧密联系生活
《数学课程标准》指出:“学生的数学学习内容应当是现实的,有意义的,富有挑战性的,这些内容有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”学习内容来自学生生活实际,在学生已有的经验的基础上学习,可使学习更有效。因为,学习内容贴近学生知识经验,符合学生心理特征,容易形成知识结构,同时也充分体现了学习生活化的理念。面积的概念具有较强的抽象性,学生理解起来会有一定的难度,为了使学生较好地理解和掌握“面积”这个比较抽象的概念,我从生活入手,让学生找生活中物体的面,感知物体的面有大有小,进行物体面的大小比较,通过物体面的大小比较揭示物体表面的面积。这样层层深入,环环相扣,学生在不知不觉中理解了面积的含义,有种水到渠成的感觉。体现了现代教育思想
所倡导的“数学课堂教学应向学生提供与生活实际密切联系的、有价值的、富有趣味的教学内容”这一基本理念。
二、关注估计不规则图形的面积
教材中提供用方格纸估计不规则图形的面积,这些方法容易被教师们忽视,恰恰是这些细节影响学生最深。因为,现实生活中有很多物体并不像教材上那样有规则。让学生学会估计的方法更有价值,更能实现学以至用的目标,同时也是发展学生空间观念的重要途径之一。
从学生的生活经验出发,引导学生把生活中对图形的感受与空间存在的几何图形建立联系,让学生充分感受到数学和生活的联系,体会到数学确实就在我们的身边,更有效地发展学生的空间观念。从而形成应用意识
总之,要准确理解教材的编排意图,联系学生的生活,按照学生的认知规律,合理重构教材,通过多种途径培养学生的空间观念,形成应用意识,让学生在广阔的数学世界中遨游。
学习《图形与几何》教学心得体会
通过学习了庄老师“图形与几何”的教学分析与案例评析专题讲座后,我深有体会,我觉得在以后的教学过程中应该把握以下几个要点:
(一)、激发学习兴趣,提供现实情境。
空间与图形的教学,应当从学生熟悉的生活环境出发,学生尽管具备了一定的生活经验,但他们对周围的各种事物、现象有很强的好奇心。所以在教学中,应抓住学生的好奇心,根据教材的特点,结合学生的生活实际,把生活经验数学化,把数学问题生活化,让学生在这样的情境中主动地学习。
(二)、自主探索、合作交流,促进学生学习方式的转变。 在教学中,应为学生提供合作和交流的机会,不应简单地、机械地让学生模仿、记忆教师和书本上的语言。在教学中还要注意在操作过程中引导学生进行思考。
(三)、发展空间观念,培养创新意识。
空间观念是创新精神所需的基本要素之一,所以《标准》把空间观念作为义务教育阶段数学学习内容的核心概念之一,把建立初步的空间观念作为数学方面的一个重要目标。建立初步的空间观念使学生的想像力和创造性得到自由发挥,并能感受复杂物体的形状与简单几何体之间的联系。
(四)、不断反思教学设计、教学过程,更好地促进教学。 关注学生的学习过程,关注学生在数学活动中所表现出来的情感与态度,通过对以上几个要点的把握,让学生在轻松、愉快的氛围中体验数学,探索学习。, 更重要的是:还可以发展学生的空间观念,培养他们的创新精神和实践能力。“空间与图形”的内容,与我们的生活有着千丝万缕的联系,所以我们在教学中要善于挖掘题材,让学生能综合利用所学知识和技能解决一些实际问题,形成解决问题的一些基本策略。我们在进行“空间与图形”的教学时,要紧密联系学生的生活经验和活动经验,创设“现实的、有意义的、富有挑战性的数学活动”,让学生在观察、操作、实验、想象、应用中自主构建知识,发展空间观念。
图形与几何教学心得
空间观念是现代人素养的重要组成部分,是灵活思维和创造意识的有机组成。为此,新课程实施中,关于图形与几何的学习内容有所增加,素材有所拓宽,特别是增加了平移、旋转、对称等图形的变换研究不足,现代信息技术手段在图形教学中没有得到更好的利用。对此,基于几何图形这些性质,如何来发展学生的空间观念、几何直觉、图形的设计与推理的能力?我认为,在教学中教师应该用多种方法帮助学生认识实现生活中的几何图形特征、大小、位置关系和变换,使学生更好地认识、描述生活空间并对几何图形进行有效的交流。教师可以引导学生认识简单的几何图形,感受平移、变换、对称等现象,学习描述物体相对位置的一些方法,并引导学生进行简单的测量活动,在此基础上,进一步认识一些几何图形的基本特征。教师组织学生通过观察、操作、推理等手段,逐步认识简单的几何图形知识。学生在多种多样的学习活动中,发展他们的空间观念。在学习过程中,教师还要组织引导学生进行表达与交流。同时,也要避免对周长、面积等繁杂的计算。总的说来,我认为,几何教学可以从以下几个方面来展开。
一、生活经验素材,真正地落实数学源于生活的理念。
充分利用学生的生活经验,从小学生熟悉的事物中引人教学,效果显著。
二、多样的观察活动,真正地学习几何图形的特征。
观察是小学生利用感观了解外部世界的一种活动。学生学习几何知识离不开观察活动,组织多种多样的观察活动,是学生进一步发展空间观念的主要方式。
三、简单的几何推理,真正的实现空间观念的发展。
引导小学生进行几何推理是一个重要的教学还节。几何推理在教学中主要体现在以下几个活动中:第一:在观察中思考。第二:在对比中判断。第三:在想象进行推理。
四、有效的实验操作,真正地经历数学演绎和论证的过程。
学生的亲手操作实验是最有效果的,可以让学生在视觉、听觉、触觉上协同参与,空间几何观念真正地形成和巩固。在实验的操作中,学生通过丰富的图形、符号来感知、操作、参与探究活动,初步的产生演绎和论证的演示。
五、图形动态化处理,有利于几何知识的综合运用。
图形与几何教学需要进行动态化处理的基本方法是:
1.纯语言文字形式。就是使用描述性语言,对图形的形成过程或变化进行直观描述。
2.纯图形形式。就是使用图形的变化,留下变化的痕迹,只管呈现图形的属性。
3.文字与图形结合。
无论哪一种形式,都应该先想象,再动态演示。基本过程为:观察,想象,表象,画图或运用。
图形动态化处理,有利于形成几何概念,有利于展示图形之间的规律,有利于学生猜测探索几何图形的属性,有利于学生的基础训练和技能的形成,有利于几何知识的综合运用。总之,几何图形与生活之间的联系是息息相关的,我们的视野要拓宽到生活空间,重视现实世界中有关图形与空间的问题。通过自主的探索,逐步认识几何图形的知识。在此过程中,通过从不同的角度去观察物体、认识方向、制作模型等学习活动,真正的发展学生的空间观念、几何直觉和图形的设计与推理的能力。
《小学数学图形与几何教学研究》课题方案
一、研究的现状
目前我国小学数学“图形与几何"的相关研究大多停留在对课程标准相关内容的理解和诠释上,以及对相关教材内容的整体设计与编排呈现的研究和比较上,除此之外,对“图形与几何”的教学方法和教学特点的研究也比较多。
1.对图形与几何课程特点的分析与研究。①义务教育阶段几何课程最重要的目标是,使学生更好地理解赖以生存的三维空间,发展学生的空间观念和几何直觉;
②几何教学应使学生在空间观念、合情推 理和演绎论证、定量思维等方面都获得发展;
③几何的学习内容应当是现实的、有趣的、富有挑战性的;
④动手实践、自主探索与合作交流等都是学生几何学习的重要渠道;
⑤使学生养成“说理有据"的态度、尊重客观事实的精神,形成质疑、反思的习惯,理解证明的必要性和意义,体会证明的思想,形成证明的意识,掌握证明的基本方法,是几何证明教学的核心内容①。
2.对图形与几何教材相关内容的研究。如:学科教育中《空间与图形教学目标和教材编制的初步研究》着重从学生的数学知识学习、数学能力培养的角度,提出这部分内容的主要教学目标是学习空间与图形的基础知识、建立空间观念和几何直觉、培养思维能力,并就教材编制过程中有关内容结构体系、如何把握好教学要求、联系学生的 ①秦德生、孔凡哲.关于几何直观的思考明[J].中学数学教学参考,2005(10):9
生活经验和培养学生学习兴趣等问题作了初步论述②。
3.对教学方法和教学特点的研究。例如:现代教育科学中《对小学空间与图形教学的两点思考》分析小学生学习空间与图形的基本特点, 根据其学习特点提出比较有效的教学策略, 以更好地达到课程标准提出的培养学生的空间观念等多项教学要求③。教育科研中《谈谈如何进行小学数学中的“空间与图形”教学》指出,从生活实际认识空间与图形,让学生在动手操作中学习空间与图形,等等④。
二、研究的意义
(一)理论意义
1.教育学理论
“图形与几何”对于学生空间思维的建立较为困难,教师如果每天都采用一种方式教学,学生将不会学到“图形与几何”的精髓,学生最多就是记忆公式,然后做题、考试等等,思维没有得到良好的锻炼。教师组织教学的方式有很多,其中教师采用多变的教学方式(转变课堂环境)有利于培养学生对数学学习的积极性与主动性,增加学生学习的兴趣与动机。
2.教育心理学理论
“图形与几何”的教学研究,应该掌握学生的思维发展特点,学生的年龄特征,心理发展的状况以及生活经验和已有的知识经验。教师的教学应该是有意义的使学生接受记忆,而不是机械的记忆。有 ②③ 俞求是.空间与图形教学目标和教材编制的初步研究[J].学科教育,2002(3):18
彭国庆.对小学空间与图形教学的两点思考[J].现代教育科学,20lO(6):94
④ 陈静、黄彬.谈谈如何进行小学数学中的“空间与图形”教学[J]·数学教研,2005.No2 2 意义的使学生学习“图形与几何”,可以锻炼学生的逻辑推理,空间观念,几何直观的能力。
3.小学数学教材的分析
掌握“图形与几何”各阶段在教材中的分布,了解各阶段的教学中的教学重难点,把握教学的准确信与实用性。分析教材的插图,有利于丰富教学设计的内容,提取数学的趣味性。
(二)实践意义
1.“图形与几何”能够帮助学生建立空间观念,培养学生的空间思维能力和空间想象能力,而且能够帮助学生培养严谨的逻辑推理能力。
2.课程内容要反映社会的需要、数学的特点,要符合学生的认知规律"等。教学目标有“培养学生的空间观念、几何直观、推理能力”。
3.通过对教材内容的分析来了解教材编写的设计意图,增强对教学内容的把握,最主要是根据现阶段的教学现状发现教学过程中存在的问题,以及提出主要的教学建议。
三、拟研究的主要问题
1.“图形与几何”教学建议的实效性
在“图形与几何”的教学研究中,很多教学建议都是理论的,对于实际教学没有实效性的帮助,而且教师要通过理论来要寻找到一种高效可行的教学方法来辅助教学是比较漫长且艰难的过程。在未来的研究中应用实证研究找到可行方法体现教学的实效性,这样的研究才能有效帮助教师的教学。教学过程中多联系生活实际,任何知识都是来源于现实生活,作为数学中的几何知识、更是离不开与现实生活的联系。教师要了解学生的思维特点,注意力的持续度,年龄特征,心理发展的特点。教师不仅要备教材,而且也是要备学生,这样把教学建议的理论向有效、可行的教学研究转向。
2.“图形与几何”教学方式的转变—改变教学环境
教师上课地点都是教室,要想学生保持积极主动的上课状态,教师应该转变教学的环境——自然环境中的课堂。课标里说了,“图形与几何”删除了教材中许多“繁、难、偏”内容和表述,使教材语言的表达更加简单、科学、专业。而且“图形与几何”内容是密切联系学生现实生活、反映社会发展需要的,不仅教会学生基础知识,而且引导学生运用所学知识解决生活中实际问题。对于教学的内容不是很复杂,教学过程大多都是实际的动手操作,也是较容易在课外完成的教学任务。那么,换一换教学环境不仅能够激发学生的学习兴趣,又可以直接联系生活实际解决数学问题,这样就拉近了数学与生活的密切联系。在一种比较广阔自由的环境下学习,有益于培养学生的合作性、自立性和创造性,也有助于空间观念与空间想象的培养,在大自然与生活中学习,那将是一种全新的课堂。“图形与几何”的教学将会取得一种突破的进展。
3.联系提出的实效性建议,结合转变教学环境设计教学方案。 通过实践发现问题,然后提出实效性建议,最后结合转变教学环境设计完成教学案列。这一个过程就是对于以上2个问题的总结与归纳,这个过程不仅仅是要提出教学研究的实效性建议,更重要的是能否发现“图形与几何”中的教学问题,然后提出符合实际的教学要求。在论文中将体现教学设计的案例,内容包括“图形与几何”的4个部分。教学环境的选择是分类给出的,都要有例子可供参考。这样有助于教学的进步,也提供了一种教学的思考方向。
四、研究的重点和难点
1.重点:“图形与几何”教学的实证性找到解决教学的时效性具有挑战性的。另外教学研究的转变课堂是否可行,是否能够完成也是这一项研究的重点。
2.难点:“图形与几何”的教学案例的设计是一个难点,然而,这是综合了时效性与转变课堂的教学环境而设计的适合教师学的模板,也是考验在设计教学的时候的各种能力,对教材的理解,对学生的关注,对教师的要求等等。因此这就是能否创造出新颖的“图形与几何”教学的方法的难点。
五、论文的提纲
1.通过听教师上“图形与几何”的课,提出实效的教学建议。 下学期我计划去听教师上12次课,在小学的教学课程内容里,下半学期1—6年级都将学习到“图形与几何”的内容,我选择的听课内容分别是:一年级下册第二单元——观察与测量;
二年级下册第三单元——方向与路线;
三年级下册第二单元——对称平移和旋转,六年级下册第一单元——圆柱与圆锥。我选择这些内容的理由是“图形与几何”的教学内容包括了图形的认识、测量、图形的运动和图形与位置这四个部分,所以我尽量把每个部分的内容都涉及到。我要听12节课是因为我想要在3个不同的学校听同样4个教学内容的课,选择的教学内容相同,虽然有局限性但是尽可能体现一般性,这样最后的结果才会较为科学。这一步最主要的是发现教学中存在的问题,并能根据老师的教学情况提出实效的教学建议。
2.分析“图形与几何”教材内容,选择出转变的课堂教学环境。 并不是所有的教学内容都可以在室外完成,这里我想要做的事情就是把教材的内容分析,结合教学目标,课标要求,把自己觉得可以换一个环境上课的内容罗列出来,并设计出教学步骤。然后在实习的时候试行,看看自己设计的方案在另外的环境下是否可行,检测结果。选择出能够转变环境上课的教学内容,结合第一点实效性的建议设计更加综合性的“图形与几何”部分教学内容的教学方法。
3.整理教学方法,综合教学环境,确定“图形与几何”部分内容的教学例子。
最后一步是论文精华的显现过程,它要有实效性的教学方法,还要有不同的教学模式(也就是转变课堂环境)。论文最后给出的例子是经过了很多的分析与研究才能够完成的一份教学设计。在论文的第一点内容里面主要是寻找“图形与几何”教学中存在的问题,然后提出建议。在最后这里就是整理分析整合第一点的教学建议,然后结合实际提出更加有实效性的可行性建议。相对与教学而言,也是要经过严密的分析,筛选和实践来总结“图形与几何”教学研究的结果。最后结合第一和第二的内容,设计4个“图形与几何”内容的教学设计,每个部分都有一个教学设计例子。
六、进度安排
2015年3-6月完成第一个内容。听课作好记录,提出教学建议。
2015年7-8月分析“图形与几何”教材,选择可以在室外上的部分内容,并把转变教学环境的教学设计方案做出。到了实习阶段就可以直接实施,检验可行性。
2015年9-12月完成第二个内容和第三个内容,完成论文。
七、参考文献
[1]中华人民共和国教育部制订.全日制义务教育数学课程标准[S].北京师范大学出版社,2011 [2]周东明.儿童的思维呈现怎样的严密性[J].人民教育,2007(9):43 [3]陈静、黄彬.谈谈如何进行小学数学中的“空间与图形”教学[J].数学教研,2005.N022 [4]杨庆余.小学数学课程与教学[M].中国人民大学出版社,2010(7) [5]鲍建生、周超.数学学习的心理基础与过程[M].上海教育出版社,2009(10):5 [6]马锦芳.谈小学数学教材空间与图形的特点[J].小学数学参考(课改纵横),2008(2):105 [7]顾凌艳.小学数学的空间与图形的教学研究[J].教育教学论坛,2011.N025:76
《几何与图形》教学建议
作为《数学课程标准》(简称标准)的四个领域之一,“空间与图形”主要研究现实世界中的物体和几何图形的形状、大小、位置关系及其变换,它是人们更好地认识和描述生活空间并进行交流的重要工具。
“空间与图形”的内容主要分为四个方面:图形的认识、图形的测量、图形与变换、图形与位置。如何立足课堂,把握好本领域的教学实践,我们提出以下建议:
一、领会《标准》理念,熟知教学目标
《标准》理念是我们进行课堂教学的依据,教学目标是我们进行课堂教学的达成方向,二者的重要性不言而喻,所以我们必须要达到“领会”与“熟知”的程度,才能做到教学设计更贴切,教学策略更得当,教学效果更显著。
我国的数学教学大纲、教材也经历数次变革,但从“几何”的课程内容和目标看,小学阶段主要侧重于长度、面积和体积的计算,较少涉及三维空间的内容,缺少与现实生活的紧密联系,使“几何”直观的优势没有得到充分的发挥;
过分强调演绎推理和“形式化”。同时,由于教学内容呈现方式比较单一,也使学生的空间观念、空间想像力难以得到真正有效的发展。虽然“教学大纲”也有关于“空间观念”的表述,如“能够由形状简单的实物想像出几何图形,由几何图形想像出实物的形状”等等,但在具体的教学内容和教学要求中却鲜见与之有关的解释和说明。《标准》旨在克服我国义务教育课程目标过于偏重基础知识与技能的倾向,克服重“概念与技能”,忽视“情感与态度、体验与反思、过程与自主创新”的弊端,努力构建以人的发展为中心的数学课程内容体系:强调内容的现实背景,联系学生的生活经验和活动经验;
增加了图形变换、位置的确定等内容;
加强了几何建模以及探究过程,强调几何直觉,培养空间观念;
突出“空间与图形” 的文化价值。如:《标准》中提出了“通过建筑、艺术上的实例了解黄金分割”“通过对欧几里得《原本》的介绍,感受几何的演绎体系对数学发展和人类文明的价值”等要求,使学生了解“空间与图形”有着丰富的历史渊源;
重视量与测量,并把它融合在有关内容中,加强测量的实践性等。
《标准》指出,在整个小学阶段空间与图形部分的知识与技能目标为:经历直观认识简单几何体和平面图形的过程,经历探索物体与图形的形状、大小、运动和位置关系的过程,了解简单几何体和平面图形及基本特征,感受平移、旋转、对称现象,能对简单图形进行变换,能初步描述物体的相对位置,能初步确定物体的位置,获得并逐步发展初步的测量(包括估测)、识图、作图等技能。数学思考的目标为:在对简单物体和图形的形状、大小、位置关系、运动的探索过程中,发展空间观念。解决问题的目标为:在解决问题的活动中,初步学会与他人合作,并能与他人交流思维的过程和结果。情感与态度的目标为:感受数学思考过程的合理性通过观察、操作、归纳、类比、推断等数学活动,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性。
我们把这些目标鲜明的摘录出来,一方面便于教师进行领会、记忆与熟知,另一方面也是提醒我们要把每一堂课的教学融入整体目标的大背景下,这样对于空间与图形部分的教学才是系统的,不割裂的。
特别说明的是“空间与图形"课程的核心目标是发展学生的空间观念。
1、怎样算具备了空间观念呢?《标准》理念指出:空间观念主要表现在能由实物的形状想像出几何图形,由几何图形想像出实物的形状,进行几何体与其三视图、展开图之间的转化;
能根据条件做出立体模型或画出图形;
能从较复杂的图形中分解出基本的图形,并能分析其中的基本元素及其关系;
能描述实物或几何图形的运动和变化;
能采用适当的方式描述物体间的位置关系;
能运用图形形象地描述问题,利用直观来进行思考。这就是我们发展学生空间观念的方向。
为了培养和发展学生的空间观念,《标准》不仅在“空间观念”的提法上加入了一些新的元素,而且在内容上做了相应的安排,提出了一些新的具体目标。
[如:
“辨认从正面、侧面、上面观察到的简单物体的形状”“会用上、下、左、右、前、后描述物体的相对位置”“会看简单的路线图”,以及有关变换的直观内容;
“能辨认从不同方位看到的物体的形状和相对位置”“认识长方体、正方体和圆柱的展开图”,以及丰富的变换、坐标的内容。这些内容的设置,成为培养学生空间观念的重要学习资源,并且空间和空间观念从孩子入学的那一刻开始就伴随他们成长了。]
2、发展学生的空间观念不是孤立的,有的老师认为好像只是观察物体等特定内容在培养学生的空间观念。实际上,图形的认识、图形与变换、图形与位置、图形的测量,都对培养学生的空间观念有着重要的价值,在教学中应该进行有机整合。
二、建立课堂模型,明确教学思路
在把握了《标准》理念与教学目标后,教师可能更为关心的如何上好一节有关空间与图形知识的课。《标准》中“空间与图形”的四方面内容都以图形为载体,以培养空间观念、推理能力,以及更好地认识与把握我们生存的现实空间为目标,不仅着眼于学生理解和掌握一些必要的几何事实,而且强调学生经历自主探索和合作交流的过程,形成积极的学习态度和情感。《标准》提倡以“问题情景—建立模型—解释、应用与拓展、反思”的基本模式展现内容,让学生经历“数学化”和“再创造”的过程,不采用“公理定义→定理性质→例题→习题”的结构形式。
在这里,我们根据空间与图形的不同内容分类提供相应的课堂模型建议:
(一)图形的认识
图形的认识是空间与图形领域中的重要内容。其内容包括:点线面体的认识长方体、正方体、圆柱和球,长方形、正方形,线及其相互关系,角、三角形、四边形、园,圆锥,三维视图等图形。在进行图形的认识类知识教学时,我们建议的教学模式,基本的课堂教学环节如下:经历情境,抽象图形
实践操作,感知特点
欣赏拓展,回归生活。即在教学中一定要注重使学生在现实世界中积累有关图形的经验基础上,认识常见的立体图形和平面图形;
在丰富的现实背景中,通过观察、操作、比较、概括等体验常见的图形的性质,并运用他们解决实际问题;
在观察物体、拼摆图形、设计图案等活动中,构建空间观念;
欣赏丰富多彩的图形世界,体会图形在现实世界中的广泛存在。具体阐述为:
1、让学生经历从现实情境中抽象出图形的全过程,从立体图形到平面图形展开学习 在教学中,要创设生活情境,让学生在生活的空间中发现图形,经历从现实源泉中抽象出数学模型的过程,体会数学图形与现实世界的密切联系。过程如下:
生活实物
实物图
几何图形(模型)
回归生活 【案例1】 如在角的认识一课中,一位老师设计了以下教学步骤:
(1)、说说生活中看到的角:学生说的兴高采烈:扇子,红领巾、书本、五角星、桌面、墙角等等五花八门,体现了生活情境的引入。
(2)、用多媒体课件展示生活中实物如扇面、红领巾,桌面等,并把有角的部分用红色醒目标示出来,体现了由生活实物到实物图的初步抽象。
(3)、去掉课件中的实物部分,只留下红色显示的角的图形,再让学生直观观察角的特点。就完成也由实物到几何图形的抽象。
分析:在这个案例中我们可以看出教师依据学生的生活背景与知识背景,逐步完成由实物到几何图形的抽象观察,非常符合学生的认知规律,而且学生对角的认识也更加立体。
2、让学生经历实践操作等活动,在活动中感知图形的基本性质
“感知”是根据相应的学习材料,通过手、口、脑的并用,初步地感受和认识。学生空间观念的发展、活动经验的积累、图形性质的体验等都是在观察、操作、思考、想象、交流等数学实践活动中进行的。这里,我们要特别强调动手操作的重要性。学生通过折叠、剪拼、画图、测量、建造模型、分类等活动,对图形的多方面性质有了亲身感受,这不仅为正式地学习图形的性质奠定了基础,同时积累了数学活动经验,发展了空间观念。所以我们提倡学生人人拿学具进行操作实践,这样远比只是让学生看一下教师的示范和课件演示要获得远远多的对图形的“洞察”和体验。尤其是对长方形,正方形、平行四边形、圆形等图形的认识,我们都要通过让学生看一看、摸一摸、折一折、叠一叠、拼一拼、剪一剪、量一量、画一画、描一描、比一比、分一分、做一做等基本的实践操作活动,为正式的学习图形的性质奠定基础。
【案例2】如探究长方形的特征教学片断:
(1)、创造图形:课前老师给每组发了一袋材料,你能利用这些材料或是你自己身边的材料想办法创造一个长方形吗? (2)、展示成果:教师巡视,指名实物投影摆放。
方法有:摆小棒、画点子格、拼三角板、拼小正方形等等。
(3)、思考讨论:这些长方形有什么共同的特点? 你用什么方法可以证明?(先想一想你打算用什么办法验证?再操作验证, 并把你的发现和其他同学交流讨论,看哪组想的办法多)。
(4)、汇报交流: 长方形对边相等,四个角都是直角。
逐一演示:比一比、量一量、数一数、折一折。
分析:在这个案例中我们可以看出在教师的指导下,学生进行了充分的实践操作活动,如“比一比、量一量、数一数、折一折”,对长方形的特点感知也就更加充分。
【案例3】如观察物体教学设计 观察教室
师:全体起立,观察教室的前面,说一说你看到了什么? 生:国旗、黑板、课程表„„
师:全体向后转,观察教室的后面,你看到了什么? 生:奖状、学习园地„„ 师:向左转,你看到了什么? 生:两个门、一个窗户„„
师:观察教室的右面,说你看到了什么? 生:„„.师:通过刚才的观察活动,我们了解到从不同的位置观察物体,我们看到的结果是不一样的。
观察讲桌
师:同学们学习离不开课桌,老师讲课离不开讲桌,老师请4名同学来观察一下讲桌。
请你们分别站在讲桌的前面、后面、左面、后面,说一说你看到了什么? 生:„„
师:4位同学看同一张讲桌,为什么看到的不同呢? 生:„„
师:因为从不同的位置去观察物体,看到的结果有时是不一样的。
观察大公鸡
师:看老师为你们带来了什么? 生:大公鸡。
师:请4名同学到前面来观察公鸡,你们分别站在公鸡的前面、后面、左面和右面。说一说你都看到了什么?
生:„„ 师:左面和右面看到的是不是一样的? 追问:不一样,哪不一样?
生:站在左面看到尾巴在左边、头在右边;
站在右面看到尾巴在右边、头在左边。
师表扬:同学们观察的可真仔细。
分析:同样我们能够看出在这节课上老师让学生经历了从不同的方位、由上到下、由远及近的观察过程;
让学生在观察、操作、想象、思考、交流的过程中,不断发现实物与他们所观察到的图形之间的联系,从而形成他们对三维空间与二维平面之间的看法。
3、了解并欣赏一些有趣的图形,感受图形世界的丰富多彩
图形的认识的教学设计,要注意为学生提供丰富多彩的图形世界,以开阔学生的视野,激发数学学习的兴趣,感受图形世界的神奇。
【案例4】如在认识完轴对称图形的特点后,教师安排了这样的环节:
回归生活,赏析对称美
教师提供的素材主题有:京剧脸谱、剪纸艺术、建筑物体、平面图形、字母等。
分析:一下子把学生带到美妙的数学生活中,既再一次体会了轴对称图形的特点,又充分感悟到生活中轴对称的美,感悟到数学之美,实现了课堂的升华。
(二)、图形的测量
同传统教学相比,《标准》在图形的测量部分加强对量的实际意义的了解。结合生活实际,注重动手操作,掌握测量的方法。注意对测量工具和计量单位的选择,并对测量结果进行解释(误差)。重视估测,弱化了单纯的计算(周长、面积、体积)为中心的传统框架和无实际意义的单纯量的单位换算。据此,我们建议的教学模式,基本的课堂教学环节如下:结合情境,理解量的意义
操作体验,建立单位的表象
探讨方法,解决实际的问题。具体阐述为:
1、在具体问题情境中注意对所测量的量的实际意义的理解
对于周长、面积、体积等的学习,首先要理解它们的意义。这不等同于记忆他们的定义,而是在具体的情境中体会它们的实际意义。
【案例5】如《周长》教学,教学情境如下:
(1)、创设情境
感知概念
①.动画引出“一周”“首尾相连”(板书一周)。
②.揭示“首尾相连的图形”就是“封闭图形”(板书封闭图形)。
(2)、判断封闭图形为揭示概念打基础
①.先判断,找出封闭图形。
②.描出这些封闭图形的一周。
③.揭示定义封闭图形一周的长度就是这个图形的周长。
( 板书及时补充完整) (3)、联系实际生活
摸一摸身边图形的周长。
学生:桌面
数学书封面
一些实物。
老师:摸黑板封面(体现没有摸满一周)。
(4)、小组合作,测量周长
①.出示问题,讨论交流。
师:你用什么方法测量下列图形的周长呢?
师:每种图形分别用到了哪些测量工具呢?
②.提问测量方法及使用工具。
③.请测量它们的周长并填写在报告单上。
④.实物投影展示测量结果。
(5)、总结
①.这节课你有什么收获吗?
②.在实际生活中都有那些地方用到了周长呢?
分析:本案例通过创设动画情境、活动情境在活动中感悟周长的概念,使学生较好的理解了周长的意义。尤其突出了充分探索测量周长的方法。]
2、在测量过程中,体会建立测量单位的必要性,理解度量单位的实际意义 对于测量单位的学习,首先要提供给学生实际测量的机会,鼓励学生选择不同的测量方法,并在彼此交流的过程中体会到建立统一计量单位的必要性。
如:讲长度单位,让学生先经历用不同的工具测量同一物体的长度,在学生得出这个物体的长度是“几个一乍的长度”“几个一支铅笔的长度”“几个一本书的长度”“几个一把尺子的长度”等,再引出长度单位,这样做就是为了使学生感悟建立统一单位的必要性,产生继续学习的愿望,获得对度量单位的初步体验。] 学生还需要通过实际活动建立对度量单位实际意义的体验,1cm到底有多长,1cm 到底有多大,1cm 到底占多少空间,要使这些单位变得直观具体,必须让学生通过各种实践操作活动,并让学生列举生活实例加以说明。
[【案例6】下面是一位教师在教完“千米的认识”后写的教学随笔。
我校的操场地面是用水泥方砖铺成的,我带孩子们去数方砖,再计算出操场的长度,长度正好是50米,一个来回是100米,我让孩子们走了一个来回,10个来回是1000米,又叫做1千米。
我留下了家庭作业,“从家到学校大约多少千米。”让家长协助完成,学生和家长共同行走一千米的路程,对一千米都有了很好的感知体验。另外,我还留下了让孩子们了解和搜集各种交通工具的时速问题,让孩子们自己测一下自己的步行速度„„
分析:通过教师的教学与作业布置我们可以感受到,教师特别注重学生在实际活动中经历对度量单位实际意义的体验,从而建立对度量单位的表象,可以说学生不仅仅记住了一个计量单位一个名称,更重要的是感知了这个量的大小多少,这个认识是丰富的、
立体的。
3、重视估测,掌握估测方法
在测量的学习中,应该始终重视估测的重要性。估测有助于儿童理解测量的特征和过程,并获得对测量单位大小的认识。
如,在长度单位的学习中,要安排估计身高,步长、臂长、凳子的长度等活动;
对面积单位的学习中,要安排估计数学书封面的面积、教室地面的面积、学校操场的面积;
对容积的学习,我们可以安排估算粉笔盒的容积、卡车汽油箱的容积,水桶的容积等活动。这些活动会加深学生对量及其实际单位的理解,发展学生灵活运用知识解决实际问题的能力。要坚持先估测后验证的原则。
对大数目的估测,要关注学生的估测方法。如,对于长度1千米的估测,当然可以让学生实地走一走,再回头看一看,脑海里想一想有多长,我们也可以先让学生确定100米的长度,再定500米的长度,500米里有5个这样的100米长度,最后再感悟1千米有两个500米的长度,这里不是简单的数学推理,更主要的是让学生真正的感悟1千米到底有多长。
4、探索规则图形的面积和体积公式,并能运用公式解决问题。
不能将主要精力放在套用公式进行计算上,以至于将这部分内容简单地处理为计算问题。实际上,对于规则图形面积和体积公式的探索和应用,不仅有利于学生解决实际问题,并且对于学生认识图形的特征和图形间的相互关系,体会重要的数学思想,对发展空间观念也是大有好处的。对于这部分内容的教学,教师应鼓励学生在具体的情境中,让学生经历猜测、观察、操作、归纳、建立数学模型、实践应用的数学发现过程。可以用布鲁纳的发现法教学长方形、正方形的面积和长方体、正方体、圆锥体的体积;
可以用转化思路教学三角形、平行四边形、梯形和圆形的面积和圆柱的体积(包含不规则的图形)。
【案例7】如教学《长方形的面积》 师:同学们,你们学过长方形的面积吗? 生:没有。
师:今天我们学习长方形的面积,请你们先看看书,想一想:怎样求长方形的面积?
学生看书后汇报:书中先讲了用数方格的方法求长方形的面积,长方形的面积等于长乘宽。
教师:(板书:长方形的面积=长×宽),你们齐读三边。
学生:齐读三遍。
师:用字母怎样表示哪? 用字母表示就是s=a×b或s=ab 师:好,我们讲应用题。
分析:这就是一个教学反例。在案例中,老师没有引导学生对长方形的面积公式进行有效的探究,学生靠机械记忆知道了长方形的面积=长×宽,却并不理解公式的由来与意义,对公式的掌握就不会深刻熟练。再看下面的环节老师要“讲应用题”也可以想象出是对公式的单纯应用,而不是解决生活中的实际问题,知识的价值性就无从体现了。]
(三)、图形与变换
这部分内容包括平移、旋转、反射和对称,分别在
二、五下、六年级学习。了解图形的变换,对学生认识丰富多彩的现实世界、形成初步的空间观念,以及对图形美的感受和欣赏都是十分重要的。通过画简单的对称图形和运用平移、对称和旋转设计有趣的图案,有利于学生初步了解图形之间的关系,有利于发展学生的空间观念。针对这部分内容我们建议的教学模式,基本的课堂教学环节如下:发掘现象,感悟特征
实际操作,体验方法
灵活运用,创新实践。具体阐述为:
1、在生活情境中认识变换现象,能在方格纸上画出一个简单图形经过变换后的图形。
其实,学生很早就有了物体和图形运动的经验,他们通过折纸、转风车、照镜子等等获得诸如平移、旋转、反射和对称的体验。我们要让学生举出生活中大量的变换现象,如旗帜升起、螺旋桨转动等以及建筑、植物(枫叶)、动物(蝴蝶)等来感知认识变换现象的整体特征。画出平移后的图形,是教学重点也是难点,要讲清方法,关注学困生。
2、组织学生进行实际操作,体验图形变换的方法
考虑到学生的语言表达能力和动手操作能力有所提高,所以“图形与变换” 中四条具体目标的阐述有着明显的特点——每条目标都对图形变换的操作方式作出了明确的界定,比如,“用折纸等方法„„”“利用方格纸等形式„„”“在方格纸上将„„平移或旋转”“在方格纸上设计图案”等。这种阐述旨在要求以直观操作的方式引导学生初步认识“图形与变换”的数学内涵。
因此,我们在教学实践中,不应单纯地介绍图形变换的知识,而应组织学生实际操作,从而体验图形变换的方法。
[如,可要求学生利用图形变换制作一个美丽的图案。这是一个开放式的活动,学生可以从一个或几个简单的图形出发,按照自己的设想进行变换,得到新的图案,并可以不断地改变操作过程,使所得的图案更美,进而相互交流各自图案的特点,相互欣赏、评价图案的美以及设计的创新]
3、注意让学生欣赏并体验图形变换在现实生活中的广泛应用,灵活运用轴对称、平移和旋转组合进行图形设计
我们要充分的利用教材(或多媒体手段)呈现的美丽图案,让学生在观察图形时,发现熟悉的图形;
运用数学的眼光分析图案是否运用了变换;
欣赏各具特色的图案,发现其中蕴涵的对称美、和谐美、简洁美;
将以此为启发,发挥学生的个性和创造力,亲自动手设计图案以灵活运用所学知识和技能,并从中体会创造的乐趣和辛苦,领略图形世界的神奇。
(四)、图形与位置
这部分内容包括“位置”——上下、前后、左右;
“位置与方向”——东、南、西、北等;
“位置与方向”——含有横轴、竖轴和夹角的坐标图;
“位置”—— 坐标数及综合。分别安排在一下、三下、四下、六上年级学习。我们建议这部内容的教学模式,基本的课堂教学环节如下:联系生活,感悟知识
活动结合,掌握方法
拓展延伸,体现应用。具体阐述为;
1、结合知识与学生生活实际的联系进行教学。
图形与位置这部分内容与小学生的实际生活具有天然的联系,应该充分利用学生生活中感兴趣的事物,引导学生探索图形的特性,有利于唤起学生已有的生活常识和经验,提高感知的效果。
【案例8】如关于“方向和路线图”的教学:可以把学生带到操场上,让他们说一说早晨的太阳在什么方向。让学生面向东站好,告诉他们背对着的方向是西;
再让学生伸开两臂,左手指的方向是北,右手指的方向是南。从而利用学生已有的前、后、左、右的方位知识与东、南、西、北建立起联系,帮助他们认识这四个方向。然后,结合学校的具体情况,让学生说出校园内的四个方向各有什么建筑物,使学生进一步熟悉东、南、西、北这四个方向,并能用这些词语描述建筑物所在的位置。
2、注重结合丰富的活动情境开展教学
[【案例9】如在“确定位置”教学中教师可以设计以下活动:
(1)让个别同学介绍自己在第几组第几个,从说自己的座位抽象出“数对”这个概念。
(2)通过口头练习,让学生看一看用数对的方式说一说自己的位置。
(3)让学生用所学的数对方式向大家介绍家乡的美丽风光。
(4)引导学生用所学知识进行设计创造。
分析:这样就能集合学生的参与性、活动性、体验性,提高了学生的学习兴趣。]
3、回归生活,运用学到的方法解决实际问题
[【案例10】如方向与路线的课尾环节,可以安排由学生描述从家到学校的路线、途经的主要建筑物(参照物)以及相应的距离等,并根据描述画出简单示意图,在交流中加以修改、完善。
分析:在这样的过程中,学生不仅学会了“借助不同参照物确定物体的位置,并画出示意图”,这样一个数学方法,而且体会到了这个方法在生活中的应用。] 需要提醒的是在教学这部分内容,要注意:
(1)、不要死记硬背,通过活动感悟、理解概念;
(2)、允许学生有个认识过程,有些知识如“左右,南北”等不是一节课就能使学生人人都过关的,是要经历反复的经常的认识过程;
(3)、认识图上的位置和实际位置相结合;
(4)、室内教学和室外教学相结合;
(5)、左右有相对性,以“人的左右意识”为标准。
三、完善教学策略,优化教学效果
有了课堂模式(基本的课堂教学环节),可以说是有了上课的框架(这种教学模式是动态的,不是一成不变的),但在具体实施中,还需要相应的教学策略相支撑。在空间与图形部分,我们给出教学策略建议为:
教学策略一:联系学生的生活经验和活动经验,呈现现实情景
丰富多彩的图形世界,给“空间与图形”的学习提供了大量现实的有趣的素材。几何教学的过程就是把各种对象由具体的事物变成抽象的几何体进行研究。学生理解几何知识时,需要把几何体与具体的事物联系起来,经过比较、分析、综合、抽象、概括、判断、推理等思维活动来实现,因此,学习这部分内容,需要感性直观材料的支持。
1、提供“生活化”的学习材料,让学生在情境中体验
选取与呈现现实生活情景和生活现象作为“空间与图形”学习的内容,可使数学由“陌生”变为“熟悉” ,由“严肃” 变为“亲切” ,有助于增强数学与生活的密切联系,使学生感觉到数学就在自己的身边,从而愿意亲近数学,想学数学。
【案例11】如“直线和线段”的教学就可以呈现“四组镜头”让学生观察。镜头一:妈妈织毛衣的场景,突出散落在地上的绕来绕去的毛线。镜头二;
大桥上一根根斜拉的钢索。镜头三:一个女孩在打电话,用手指绕着弯弯曲曲的电话线。镜头四:建筑工地上用绳子栓住重物往上拉的画面,突出表现笔直的钢丝绳。然后提问:“刚才你在屏幕上看到了什么?你能给这些线分类吗?说说你的好办法。”
分析:这些熟悉的生活现象不仅唤起学生对生活的回忆,更激起了学生的探索欲望,为学生提供了“做数学”的机会。
2、回归生活,让学生在应用中体验
小学生对“图形与空间”方面的内容已有一定的认识,利用几何知识解释生活现象,让数学回归生活,使学生获得学有所用的积极情感体验。在学习了“圆的认识”后,可以组织学生对“车轮为什么是圆的”这一生活问题作深入探究。在实际应用中,体验到生活中处处有数学,处处用数学,体验到用数学知识解决生活问题所带来的愉悦和成功。
教学策略二:引导学生通过观察比较,发现几何特征
观察是学生获得“空间与图形”知识体验的主要途径之一。教学中要组织多种多样的观察活动,一年级辨认图形的观察活动(辨认长方体、圆柱、球等立体图形,选定参照物辨认方向等);
对演示实验或操作的观察(对三角形稳定性的实验);
对实物、模型的观察(认识长方体时,按照面、棱、顶点的顺序让学生一一观察;
利用实验或演示发现棱与面,面与面,以及面、棱、顶点之间的关系„„这样,有关长方体的空间观念就比较容易形成。
教学策略三:提倡“动手实践、自主探索、合作交流”的学习方式 自主探索、合作交流与实践操作是数学课标倡导的学生学习方式,也应该是我们课堂教学的组织方式。根据这一方式,提出解决重点、难点问题的三部曲:
1、独立探究,发展个性。让学生在具体问题情境中进行充分的独立探索,学生发现的每一种方法,每一个特点、性质、规律都是学生自己的,从一定意义上讲,都是一种创造,从而弘扬和发展了学生个性,培养了学生创新意识和能力。
2、组内交流,学会互助。要求学生把各自的想法在小组内交流讨论,得出小组内的结论,也要求组内学生互帮互学,共同进步。这一步对培养学生合作交流能力尤为重要,我们要以知识为桥梁,也就是说借助知识来培养学生学会交流,学会表达,学会倾听,学会质疑。我们要不断探索培养学生合作交流能力的方法和策略,二人交流是基础,三人交流是关键,四至六人交流是提升。
3、组组交流,全班展示。在组内交流阶段,学生都已经尝试了解决问题的过程,找到了方法,得出了结论,但是每组的结论方法和叙述形式不尽相同,这就为组组交流、全班展示提供了可能性和必要性。同时,不同的思路、方法、结论,也是课堂新的生成,是新的课程资源。我们教师要引导学生不仅要清晰表达本组的意见,还要倾听他组的意见,我们要通过学生组组质疑、组组争论、组组辩驳这一讨论形式,最终形成教师指导下的全班同学自己的知识或结论。
关于 “三部曲”要注意四点:(1)教师要做好创设问题情境的设计。(2)自主探索时间必须要充分,还学生发展个性的空间。(3)合作交流的必要性和时间的充分性,蜻蜓点水的讨论不仅达不到思维碰撞的效果,而且会使学困生一无所获。(4)教师需要发挥指导作用,树立“教师引导下的学生活动”的理念。
教学策略四:充分利用现代化教学手段
教师在课堂教学设计中,要尽可能地创设出优化的学习环境,以促进学生的高效率学习。计算机被人们认为是“教学过程中优化学习环境、辅助学生学习的有效的认知工具”。它在帮助学生掌握知识及技能、激发学生主动探索知识等方面创设的学习环境,有其自身独到的优越性。利用计算机进行课堂演示,通过精心设计的动画、插图和音频等,可以缩短了客观事物与学生之间的距离,更好地帮助学生思考知识间的联系,促进新的认知结构的形成。把运动和变化展现在学生面前,使学生由形象的认识提高为抽象的概括,这对于培养学生良好的思维习惯会起到很好的效果。尤其是在空间观念的建立、理解上,有些时候语言的描述繁琐、苍白,甚至无能为力。通过课件展示就能把抽象的数学问题形象化,从而也帮助学生打通了具体直观与空间想象之间的障碍,培养他们的空间想象力,建立起空间观念。
【教学内容】
教材第110页第3题,练习二十五第8~13题。
【教学目标】
1.进一步掌握三角形的特性及其三边、三角之间的关系,并能解决三角形相关问题。
2.进一步掌握轴对称和平移,能画一个图形的轴对称图形,能画平移后的图形,并能运用平移解决问题。
3.进一步掌握从不同的角度观察物体,能辨认、并画出从不同的角度观察到的物体的形状。
【重点难点】
重、难点:解决三角形相关问题,画一个图形的轴对称图形。
【教学过程】
一、复习三角形
1.复习三角形的特性。
指名说一说三角形有什么特性,并举例说明三角形特性在
现实生活中的应用。
2.复习三角形三边之间的关系。
指名说一说三角形三边有什么关系。
强调:三角形任意两边的和都大于第三边。
3.复习三角形的分类。
三角形可以分为哪几类?你是怎么分的?
4.完成教材第110页的第3题。
二、复习轴对称、平移
1.举例说明生活中常见的轴对称图形。
2.说说轴对称图形的特点。
3.复习平移。
三、复习观察物体
在同一角度观察物体,最多能看到物体的几个面?
四、课堂练习
完成教材练习二十五第8~13题。
五、课堂小结
我们这节课复习了什么内容?你有什么收获?
六、同步训练
教学至此,敬请选用《新领程》相关习题。
学习小学数学图形与几何心得体会
上传: 张云华
更新时间:2014-11-13 11:31:51
学习小学数学图形与几何心得体会
新课标在图形与几何领域有几个核心概念。主要有空间观念、几何直观、推理能力。
空间观念主要是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;
想象出物体的方位和相互之间的位置关系;
描述图形的运动和变化;
依据语言的描述画出图形等。
几何直观主要是指利用图形的描述和分析问题,借助几何直观可以把复杂的数学问题,变得简明形象,有助于探索解决问题的思路,预测结果,探索思路预测结果。通过这个数图就把这个复杂的数量关系,很简明很直观的呈现出来,而且从这个图本身,就能发现一些规律,就是一分钟通知一个人,第二次通知的新的人数,就是第一次的两倍,否则你算是算不出来,看图就看出来了。
通过线段、点,以及图形,把通知过程很简捷的表现出来,把它们之间的关系,揭示得非常清楚。
“图形与几何”领域,将几何学习的视野拓宽到学生生活的空间,强调空间和图形知识的现实背景,从第一学段开始使学生接触丰富的几何世界。新《标准》突出用观察、描述、制作、从不同的角度观察物体、认识方向、制作模型等活动,发展学生的空间观念和图形设计与推理(合情推理与演绎推理)的能力。
新《标准》在第二学段还增加了知道扇形这一内容。扇形的认识,《大纲》(修订版)教材作为选学内容,《数学课程标准》中没有认识扇形的要求。
认识扇形在《课标修改稿》中确实没有做要求,但在 “ 统计与概率 ” 部分却明确提出了通过实例认识扇形统计图的内容标准,考虑到知识的系统性、逻辑性和连贯性,以及学生认识扇形统计图的需要,《课标修订稿》在认识圆的基础上,增加了初步认识扇形。
简单说对图形认识的要求主要包括两个方面:
一是对图形自身特征的认识。
二是对图形各元素之间、图形与图形之间关系的认识。
对图形的各元素之间、图形与图形之间的关系的认识,主要包括大小、位置、形状之间关系的认识。
“图形与几何”教学策略梳理
[理论解析]
构成小学数学课程中的几何体系与构成数学科学体系的几何知识是有区别的。虽然,小学数学空间与图形内容知识点之间具有紧密的联系,但并不是一个严格的公理化体系,仅属于经验几何或实验几何的范畴。这些内容是建立在小学生的经验和活动基础之上的,小学生对几何图形的认识是通过操作、实验而获得的,即使简单的几何推理也以操作为基础。例如,平行四边形面积公式的推导过程不是通过严密的逻辑推理,而是通过割补法的操作方式获得并被大家理解。小学生的几何思维具有具体性和抽象性相结合的特点,所以,“经验”是儿童关于“图形与几何”学习的起点,“操作”是儿童构建空间表象的主要形式。为此,我们在教学过程中要关注以下几个方面的策略。
教学策略一:联系学生的生活经验和活动经验,呈现现实情景 丰富多彩的图形世界给“图形与几何”的学习提供了大量现实的有趣的素材。几何教学的过程就是把各种对象由具体的事物变成抽象的几何体进行研究。学生理解几何知识时,须要把几何体与具体的事物联系起来,经过比较、分析、综合、抽象、概括、判断、推理等思维活动来实现,因此,学习这部分内容,需要感性直观材料的支持。
(一)提供“生活化”的学习材料,让学生在情境中体验
与其他数学内容相比,“空间与图形”的教学更容易激起学生对数学的情感体验。教学可以设置贴近学生的现实生活和日常经验的教学情境,使学生通过自主探索,在已有经验的基础上,逐步认识简单图形的形状、大小和相互位置关系,初步认识一些特殊图形的特征及性质,学会运用测量、计算、实际操作、图形变换、代数化以及推理等手段,解释和处理一些基本的空间与图形问题,并在此过程中,通过从不同的角度观察物体,辨认方向,动手操作,想象,描述和表示,分析和推理等活动,发展学生的空间观念。
(二)回归生活,让学生在应用中体验
小学生对图形与空间方面的内容已有一定的认识,利用几何知识解释生活现象,让数学回归生活,使学生获得学有所用的积极情感体验。如在学习了“圆的认识”后,可以组织学生对“车轮为什么是圆的”这一生活问题作深入探究。在实际应用中,体验到生活中处处有数学,处处用数学,体验到用数学知识解决生活问题所带来的愉悦和成功。
教学策略二:引导学生通过观察比较,发现几何特征
我们对现实空间中物体的形状、大小及其所处方位的感知,对物体三视图的初步认识,以及对平面图形的研究,都需要观察,因此,观察是学生获得空间与图形知识的主要途径之一。教学中要组织多种多样的观察活动,如一年级辨认图形的观察活动(辨认长方体、圆柱、球等立体图形,选定参照物辨认方向等),对演示实验或操作的观察(对三角形稳定性的实验),对实物、模型的观察(认识长方体时,按照面、棱、顶点的顺序让学生一一观察,利用实验或演示发现棱与面,面与面,以及面、棱、顶点之间的关系,这样,有关长方体的空间观念就比较容易形成)。
教学策略三:动手操作,突出探究性活动,使学生亲历“做数学”的过程
空间观念的形成,只靠观察是不够的,教师必须引导学生进行操作实验活动,让学生自己去比一比,折一折,剪一剪,拼一拼,画一画,多种分析器官共同活动。具体做法:
(一)提供“玩”和“做”的机会,让学生在实践中体验
爱玩是小学生的天性,是他们的兴趣所在。心理学研究表明:促进人们素质、个性发展的最主要途径是人们的实践活动,而“玩”正是儿童这一年龄阶段特有的实践活动形式。在教学中,可以把课本中的一些新知识转化成“玩耍”活动,创设这样的情境以适应和满足儿童的天性。“做”就是让学生动手操作,通过操作,学生可以获得大量的感性知识,同时有助于提高学生的学习兴趣,激发学生的求知欲。教师多让学生动手操作,创造一个愉悦的学习氛围,是提高教学效果的重要环节,也是学生体验学习的一种方式。例如,在教学“圆柱体的表面积”时,让学生观察圆柱体的模型,先看整体,再分析圆柱体的各个组成部分,接着让学生动手操作,拿一张长方形的硬纸卷成筒,即为圆柱的侧面,再把侧面展开。这样反复两次,让学生在操作中观察、思考展开的长方形的长是圆柱的什么,宽是什么,然后引导学生归纳出:“圆柱的侧面展开图是长方形,它的长是圆柱的底面周长,宽是圆柱的高。”最后根据长方形面积的计算方法,推出圆柱侧面积的计算公式。在这个过程中,每名学生都经历了观察、实验、猜测、验证和推理的数学活动,并最终通过相互合作交流得出了结论。学生的实践能力、观察能力、操作能力、分析推理能力以及情感态度都得到了和谐发展。
(二)操作中提出问题,促使学生探究
问题是数学的心脏,是探究活动的基础。探究总是与问题联结在一起,问题既是探究的起点,又是探究的动力,问题是驱动探究活动的主要因素。因此,在数学课堂教学中,教师应当有意识地创设问题情境,精心设计问题,点燃学生思维的火花,在问题的引导下主动探究,获取知识。比如在“平行四边形面积的计算”教学中,可以利用多媒体教学的直观手段,给出正方形、长方形“草地”,根据情境提问,计算“草地”的面积,在学生解决问题后,教师适时地将图形转化为一个平行四边形“草地”,并设置这样的问题:“你能算出草地的面积吗?”“你能自己找到平行四边形面积的计算公式吗?”这两个问题的指向不在公式的本身,而在于发现公式的推导过程和思考方法。问题一经提出,学生就置身于问题情境中,兴趣盎然地投入到探究活动中。又如,一名教师在教学“圆的周长”时,创设了如下问题情境:①上课伊始,教师出示一个用铁丝围成的圆,提问:怎样量出圆的周长?(化曲为直法)②出示一个硬纸板圆,怎样量出这个圆的周长呢?还能用刚才的方法吗?(滚动法)③怎样量出我们学校圆形花坛的周长?还能用刚才的方法吗?(测绳法)④教师把一个带线的小球在空中转一圈,怎样量出小球转动的轨迹所形成的圆周长?还能用刚才所讲的一些方法吗?⑤揭示:下面我们就一起来研究圆的周长。这里,教师通过设置一个又一个问题,引导学生经历由疑问———讨论———解疑———疑问„„在不断的提出问题、解决问题的过程中,拓展思维,激发起探究的欲望。
(三)设计活动使学生动手操作,自主探究
“思维从动作开始,儿童可以理解的首先是自己的动作。”通过操作,可以使学生获得丰富的感性知识,可以为学生创设一个活动、探索、思考的环境,使他们主动参与知识的形成过程。动手操作过程是学习知识的一种循序渐进的探究过程。课堂上创设能让学生参与操作的环境,给学生足够的时间让学生动手操作,学生就会在“动”中感知,在“动”中领悟,在“动”中探究。“空间与图形”中有大量便于学生进行操作的内容,如用搭积木、折叠、剪贴等方式,理解空间图形、空间图形与平面图形的关系等。例如,一位名师在教“长方体体积计算”时,先让学生将12个棱长为1厘米的小正方体摆成长方体,试试看有几种不同的排法,然后让学生叙述操作顺序,填写操作的数据,即小正方体的总个数、每排个数、排数、层数分别是多少,最后,根据表中数据,引导学生自主探究,得出小正方体的总个数与每排个数、排数、层数的关系,进而推出长方体的体积与长、宽、高之间的关系,在此基础上抽象概括出长方体的体积计算公式,可谓水到渠成。
教学策略四:注重培养学生的推理能力
通过观察、实验,容易发现空间与图形中的一些奥秘,经过提炼、合情推理得到数学猜想,然后再通过演绎推理证明猜想的正确性,由此,得到数学定理、法则、公式等。例如,求证“三角形的内角和”,即是通过折、拼、量等实验方法,发现三角形内角和等于180°这一规律,进而提出猜想,再利用已知结论,证实猜想的正确性。可见,几何为学习推理提供了素材,因此,引导学生进行推理是几何教学的重要环节。
教学策略五:提倡“动手实践、自主探索、合作交流”的学习方式
数学是一种语言,它能简洁而确切地表达和交流思想。因此,学习中应鼓励儿童用数学的语言对自己的探索过程、思考策略、尝试、计划进行解释或说明。数学语言的交流不仅是让儿童将自己的思考过程展现给大家,更重要的是让儿童在表述的过程中作自我评价、自我反思和自我调整,最大限度地提高自己的逻辑思维水平。观察、操作、归纳、类比、猜测、变换、直观思考等手段,只有在大家共同探讨、合作解决问题的过程中才能不断生成和发展,并得到提升。可见,“动手实践、自主探索、合作交流”的学习方式对促进空间观念的发展具有重要意义。
总之,“图形与几何”教学策略的特征是以情景呈现问题,以问题驱动探索,以探索组织学习,以“问题情景———建立模型———解释,应用与拓展,反思”的基本模式展现教学内容。
五、关注评价的策略
1、评价的激励性;
2、评价的差异性;
3、评价的客观性;
4、评价的延时性。
初中数学几何与图形学习的心得体会
通过学习了庄老师“图形与几何”的教学分析与案例评析专题讲座后,我深有体会,就以下几个方面谈谈感想:
一、空间观念的培养
作为数学学习的核心内容之一 :
学生的空间观念的培养,成为新课程的一大特色,《新课程标准》把“空间观念”作为义务阶段培养学生初步的创新精神和实践能力的一个重要学习内容。
传统的几何课程,内容差不多都是和演绎证明,到了初中后,几乎成了一门纯粹的关于证明的学问。表面上看是遵循了“数学是思维的体操”这一传统要求,但实际上学生的学习积极性、主动性在此过程中被无情地扼杀,数学应有的人文功能、应用功能得不到有效地发挥。尤其是错过了培养学生空间观念的最佳时期。事实上,空间观念是创新精神所必需的基本要素,没有空间观念几乎谈不上任何发明创造。因为许许多多的发明创造都是以实物的形态呈现的,作为设计者要先从自己的想象出发画出设计图,然后根据设计图做出实物模型,再根据模型修改设计,直至最终完善成型。这是一个充满丰富想象力和创造性的探求过程,这个过程也是人的思维不断在二维和三维空间之间转换、利用直观进行思考的过程,空间观念在这个过程中起着至关生要的作用。所以,明确空间观念的意义、认识空间观念的特点、学生的空间观念,对培养学生初步的创新精神和实践能力是十分重要的。这就是《标准》把“空间观念”作为义务教育阶段重要学习内容的原因。
按照《标准》描述的空间观念的主要表现,其具体要求是:能由实物的形状想象出几何图形,由几何图形想象出实物的形状,进行几何体与其三视图、展开图之间的转化;
能根据条件做出立体模型或画出图形;
能从较复杂的图形中分解出基本的图形,并能其中的基本元素及其关系;
能描述实物或几何图形的运动和变化;
能采用适当的方式描述物体间的位置关系;
能运用图形形象地描述,利用直观来进行思考.
在这一章的教学过程中,学生动手较多,亲身体验较多,因此在充分挖掘图形的现实模型,充分让学生动手操作,自主探索,合作交流,以积累有关图形的经验和数学活动经验,发展空间观念之外,还应让学生有充分的思考和想象的空间。为此在学习之初,应鼓励学生先动手,后思考;
而以后,则应鼓励学生先想象,再动手。
例如,在开展正方体表面展开的教学时,可以让学生先观察正方体,再想象它的展开图,并把脑子里所想的图形画出来,然后再来进行动手操作,这样能充分验证学生对图形的空间想象力。
二、推理能力的培养
标准指出:学生通过义务教育阶段的数学学习,“经历观察、实验、猜想、证明等数学活动,发展合情推理能力和初步的演绎推理能力”。演绎推理就是我们熟知的三段论,而合情推理则是指借助归纳、类比、统计等手段得出结论。在初中阶段它是我们问题和解决问题的重要手段。我们第二次教学几何知识是在第四章“平面图形及其位置关系”,这一章除了在探索图形性质、画图、拼摆图形、图案设计的过程中,初步建立空间观念,发展几何直觉外,还要了解一些关于图形的概念,如:直线、射线、线段、角、角度、周角、平角、钝角、直角、锐角和相关的一些性质,进行简单的换算以及两条直线平行和垂直关系等等。其实这些内容小学里就已经学过,这里只是要求学生在小学学过有关知识的基础上能进一步系统地理解和掌握。
在第五章中,三角形是最简单、最基本的几何图形,在生活中随处可见,它不仅是其他图形的基础,在解决实际中也有着广泛的。因此探索和掌握它的基本性质对学生以后更好地认识现实世界,空间观念和推理能力都是非常重要的。
本章中,课本为我们提供了很多现实的有趣的问题情境,使学生经历从现实世界中抽象出几何模型和运用所学解决实际问题的过程,丰富的例子力求使学生能体会数学与生活的密切联系。多种形式的活动如测量、拼图、折纸和设计图案等,给了学生充分实践和探索的空间。为学生空间观念的发展,数学活动经验的积累,个性的发挥提供很好的机会。但我们在应用课本情境时,也要有一定的选择和变动。
三、应用意识的培养
义务阶段的数学学习,关于应用意识的刻画,主要在以下三个方面。
1、认识现实生活中蕴涵着大量的数学信息,数学在现实世界中有着广泛的应用。
2、面对实际问题时能主动尝试着用数学的角度,运用知识和寻求解决问题的策略。
3、面对新的数学知识时,能主动寻找其实际背景,并探索其应用价值。
第七章是“生活中的轴对称”。这一章的学习是为了让学生欣赏体验轴对称在现实生活中的广泛应用和丰富的文化价值。在丰富的现实情境中,经历观察、折叠、剪纸、图形欣赏与设计等数学活动过程,进一步发展空间观念。同时结合现实生活中典型实例了解并欣赏物体的镜面对称,增进学习数学兴趣。
在本章的教学中,我们会发现原来身边有很多轴对称现象,对此学生也有同感,他们不但能发现,而且还能自己进行设计,许多学生设计出了各种各样的美丽图案,然而在这一章中有一个较为重要的知识点:第三节“探索轴对称的性质”。当师生通过观察并生活中的轴对称现象,让学生对轴对称的性质进行探索时,学生空间观念的培养,推理能力的发展,对图形美的感受等都在这些实践活动中得到了逐渐的发展。
小学数学图形与几何教学专题”培训心得
本学期,我有幸参加了由教研室钱老师组织的“小学数学图形与几何教学专题”培训班,听了钱朝霞老师、郁红老师、斯苗儿老师、王晓东老师等多位专家的讲座,还听了多节关于“小学数学图形与几何”这一块知识的优质课,使我受益匪浅。
“图形与几何”这一块知识一直是我们数学老师最头疼的,孩子的年龄小,空间观念差,而传统的平面几何教学过分抽象和“形式化”,缺少与现实生活的紧密联系,使“几何”直观的优势没有得到充分的发挥;
过分强调演绎推理和“形式化”使不少学生怕学几何,甚至厌恶几何、远离几何,从而丧失学习的兴趣和信心。因此积极探索“空间与图形”教学的新思路是非常有益的。这次培训,各位专家和优秀教师给了我们一个很好的引领, 首先,几何教学要抓住核心概念展开教学
要抓住“空间观念”的核心要素——想象。其实就是对几何图形的想象能力,从这个意义上讲,无论是一维的,还是二维的还是三维的,即使是你对直线两端无限延伸的这种想象能力,都能很有效地培养我们空间观念。空间观念想要真正能够落实,还需要我们在教学过程中,充分地留给学生感受体验的过程。唯有过程充分了,观念和能力才能有所提升。几何直观反映了一个学生,能否把他的理解用一种适当的方式表达出来,能否用图形的方式来去帮助别人、帮助自己,去理解一个可能不太容易理解的东西,这是应该作为一个现代人的一种能力体现。我们应更有意识地培养学生运用图形说话,通过画图来解释,来分析问题,从而对学生的“几何直观”能力给予关注和培养。几何直观主要是指利用图形描述和分析问题,借助几何直观,可以把复杂的数学问题,变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观的理解数学,在整个数学的学习中,发挥着重要的作用。
其次,搜集利于学生掌握知识,利于培养数学能力,且学生感兴趣的“空间与图形”的素材。
人们生活在三维空间,丰富多彩的图形世界给“空间与图形”的学习提供了大量现实有趣的素材。小学生年龄虽小,但在生活中积累了一定的生活经验,形成了不少的数学表象,教学中利用学生己有的生活经验,联系实际“做数学”,让学生从生活中来,到生活中去。让学生自己在身边所熟悉的事例中提取数学素材,使学生感到亲切、自然、有趣,引发学习数学的欲望。
再次,要充分重视引导学生自主探索,并与同伴进行合作交流
以被动听讲和练习为主的方式,是难以形成空间观念的,培养学生的空间观念需要大量的实践活动,学生要有充分的时间和空间,观察、测量、动手操作,对周围环境和实物产生直接感知,这些不仅需要自主探索、亲身实践,更离不开大家一起动手,共同参与。在教学中,教师要尽量向学生提供充分的从事数学活动和交流的机会,促使学生主动探索构建数学知识。
本次培训让我深深的感到了只有在有效的教学活动中学生才能积累丰富的空间感知和空间经验,才能为空间观念的形成和发展打好基础。
图形与几何教学探究
忠州四小
吴娟
数学是研究数量关系和空间形式的科学。在《数学课程标准》中,明确提出数学课程应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想。为了适应时代发展对人才培养的需要,数学课程还要特别注重发展学生的应用意识和创新意识。
图形与几何主要研究现实世界中的物体和几何图形的形状、大小、位置关系及其变换,让学生掌握相应的基础知识和基本技能,学会解决简单的实际问题,丰富对现实空间及图形的认识,更好地认识和理解人类的生存空间,发展形象思维,培养空间观念和创新意识。
一、图形与几何在小学数学中的意义
《标准》对传统的几何内容进行了较大幅度的改革,设置了“图形与几何”的领域,主要分为四个部分:图形的认识、测量、图形与变换、图形与位置。学习和应用相应的图形与几何的有关知识和数学学习方法,对于学生更好地认识、理解生活空间,更好地生存和发展有着重要的现实意义。
1、培养学生初步的空间观念。发展学生的空间观念是《标准》中的一个重要目标,也是图形与几何学习的核心目标之一。学生空间观念的形成是建立在观察、感知、操作、思考、想像等的基础上,特别是对于低年级的学生,实际观察和操作是发展空间观念的必备环节。
2、提高学生运用知识解决简单实际问题的能力,增强应用数学的意识。几何知识来源于生产劳动,在生活、生产中有广泛的应用。
3、有助于培养学生学习数学的兴趣,促进学生形成科学精神和科学态度。在拼一拼、量一量等大量的实践活动中,可以使学生体验研究数学的乐趣,积累数学活动经验,逐渐形成科学精神和科学态度。
4、培养和提高学生的审美情趣,发展数学直觉。《标准》把数学定义为理性的艺术。数学不仅有利于发展学生的逻辑思维,而且有利于学生的创造才能的发展。
二、图形与几何教学的目标
图形与几何主要涉及现实世界中的物体、几何体和平面图形的形状、大小、
1 位置关系及其变换,它是人们更好地认识和描述生活空间并进行交流的重要工具。要掌握好这一部分的标准,必须引起对如下几个方面的重视:第一,重视学生实际生活经验对几何概念的形成;
第二,发挥几何图形本身的作用,以帮助学生正确形成和理解几何概念;
第三,及时将所学概念纳入已有系统,促使学生形成新的认知结构;
第四,设计新的解法、一方面要注意结果的正确性,另一方面要注意其根据的条理性。
三、图形与几何的教与学
1.教师的角色定位(决定课的设计和组织)
2.学生学法指导——看(观察)、思(寻求解决之路)、议(与同学探讨、辩解)、做(动手实践)、说(获、惑)。 3.现代信息技术的运用。
四、图形与几何的教学原则 1.提供现实情境,激发学习兴趣
图形与几何的教学,应当从学生熟悉的生活环境出发,小学生尽管具备了一定的生活经验,但他们对周围的各种事物、现象有很强的好奇心。所以在教学中,应抓住学生的好奇心,根据教材的特点,结合学生的生活实际,把生活经验数学化,把数学问题生活化。如以教室为情境,让学生认位置;
以学生熟悉的搭积木为情境,认识长方体、正方体、圆柱和球等。让学生在这样的情境中主动地学习。
2.注重学生独立思考、自主探索、合作交流,促进学生学习方式的转变 《标准》中提出,动手实践、自主探索与合作交流是学生学习数学的重要方式。图形与几何的教学内容上设计了很多这方面的活动。如“你说我摆”、“观察与测量”、“有趣的图形”、“动手做游戏”等,在合作中进行学习,体验合作学习的必要性和乐趣。同时在相互交流中,不断培养学生的参与意识,通过与他人的交流,感受不同的思维方式和思维过程,学会用不同的方式思考问题,尝试不同的探索方式,不断提高思维水平。在教学中,应为学生提供合作和交流的机会,不应简单地、机械地让学生模仿、记忆教师和书本上的语言。在教学中还要注意在操作过程中引导学生进行思考,把操作与数学思考结合起来。如在学习长方形和正方形的面积之后,提出:“你能和同学一起完成下面的测量和计算吗?①计算 2 《中国少年报》的面积;
②计算教室地面的面积;
③你还能计算什么面的面积?”
3.注重各部分教学内容的互相渗透,有机结合
图形与几何的四个部分:图形的认识、测量、图形与变换、图形与位置不是孤立存在的,在教学中应注意互相渗透。如《标准》中指出的“描述物体的相互位置”、“描述物体所在的方向”。又如“周长”一课,结合图形的认识和测量等知识来计算三角形、平行四边形、长方形和正方形等图形的周长。
4.加强直接感知,发展空间观念,培养创新意识
空间观念是创新精神所需的基本要素之一,所以《标准》把空间观念作为义务教育阶段数学学习内容的核心概念之一,把建立初步的空间观念作为数学方面的一个重要目标。如“位置与顺序”一课,结合生动有趣的情境或活动,让学生体会前、后、上、下、左、右的位置与顺序,会用前、后、上、下、左、右描述物体的相对位置,建立初步的空间观念。又如“认识物体”一课中的练习动手搭出你喜欢的东西,使学生的想像力和创造性得到自由发挥,并能感受复杂物体的形状与简单几何体之间的联系。
5.关注学生的学习过程,不断反思教学设计、教学过程,更好地促进教 《标准》明确提出要关注学生的学习过程,关注学生在数学活动中所表现出来的情感与态度,所以教师应重视学生知识的形成过程。如在“观察与测量”一课中,组织学生测量课桌的长度,他们可能不用标准的测量工具,而是用铅笔、绳子„„作为测量工具,于是学生体会到统一测量单位的必要性。教师不仅要关注测量的结果,更要关注学生是否积极参与活动,能否采用不同的测量方法。又如,一位教师在第一次上“平移与旋转”这一课时,用多媒体显示课本上的图:火车与直升机的运动,并问学生,它们是怎样运动的?学生回答:火车是直着向前走的;
车轮带动车走;
火车是靠燃料推动走的等。这时教师慌了,不知如何引导下去。课后这位教师反思自己的教学设计,尽量排除非本质的干扰,突出概念的本质属性,于是重新设计了教学内容。这次多媒体显示:缆车、升降电梯、风车和吊扇,学生观察。老师问:它们的运动都相同吗?学生答:不同。师:你们能把它们分分类吗?生:缆车、升降电梯的运动为一类,因为它们都是平平地直走;
而风车和吊扇又是一类,因为它们是在固定地旋转。这次改进,使学生很快地进入了对平移与旋转的感知当中。
3 6.运用现代科技手段,创设动态情境,优化教学效果
在几何知识教学中,恰当地运用多媒体,让“静”的知识“动”起来。通过直观的图像、鲜艳的色彩和逼真的音响,刺激学生的多种感官,创设动态的教学情境,促使学生积极思维、大胆想像、优化教学效果。
7.注意教学中,渗透思想品德教育
新课程非常注意对学生进行潜移默化的思想教育,而不是直白的说教。如“左右”一课中,渗透走路要靠右侧通行,上课举右手发言。“认识图形”中,有一个十字路口的场景,渗透让学生遵守交通规则。这些内容通过小学生熟悉的生活场景,使学生受到了思想品德教育,培养良好的公民素质。
五、图形与几何的教学注意些什么。
(一)、图形与几何的教学应凸显现实性
弗赖登塔尔说过:“数学来源于现实,高于现实,用于现实”。学生年龄虽小,但在生活中积累了一定的生活经验,形成了不少的数学表象,教师在教学中应利用学生己有的生活经验,引导学生把课堂中所学知识和方法应用于生活实际中,让学生运用所学知识,解决生活问题,学以致用。这样既可以加深对数学知识的理解,激发学生将头脑中已有知识“再加工”,又能让学生切实体验到生活中处处有数学,同时也锻炼了学生的思维,培养了学生的创新意识和实践能力。
如教学“圆的认识”一课时,在学生探究发现掌握了圆的基本特征后,紧接着创设学生熟悉的投篮游戏,提出了“玩投篮游戏时同学们应站成什么队型?为什么?”这样一个问题让学生思考,学生根据生活经验和学到的新知,回答:“站成圆形,因为这样公平,每个人离篮筐的距离相等。”接着又问:“车轮为什么都要做成圆形而不是三角形、正方形、椭圆形呢?”学生结合圆心到圆上的距离相等的知识推理出:用圆形做车轮,车子行驶时平稳,而三角形、正方形、椭圆形的中心到边上的距离不等,车子行驶时不平稳的结论。把学生生活中所熟悉的事例作为数学素材,紧密联系学生的生活实际,反映学生身边数学,使学生感到亲切、自然、有趣,增强了学生对数学的理解和应用数学的信心,学会运用数学的思维方式去观察、分析现实社会,去解决现实生活中的问题。
(二)、图形与几何的教学应注重操作性
《新课标》突出了将“过程”作为数学课程内容的一部分,非常注重“让 4 学生在观察、操作活动中获得直观的经验,在丰富多彩的探索活动中经历过程与体验实例”,强调了数学知识的来龙去脉,强调了对数学知识的自主建构。
“空间观念的形成,只靠观察是不够的,教师还必须引导学生进行操作实验活动,让他们自己比一比、折一折、剪一剪、拼一拼、画一画”。
学生或许会相信你所告诉他们的,但他们更愿意自己去经历,去实践,因为他们希望自己是一个发现者、探索者,更希望自己是一个成功者。所以,教师要为学生提供一切创造探索的机会。如教学“体积和体积单位”时,为了让学生更好地感受1立方米的大小,我用3根1米长的铁丝借助墙角搭建了一个1立方米的空间,让学生蹲到里面感受一下大小,钻进去两个学生,孩子说里面空间还很大,最后里面容纳了六七名学生,学生在体验中自然感受到1立方米的大小。1立方米的空间大约能容纳六七名学生的情境将深深地在孩子的心里扎根,帮助他们形成了关于1立方米的表象。
再如教学《角的度量》的时候,角的度量这部分内容的学习对学生来说是个难点。因为这部分内容数学概念多,(如中心点、零刻度线、内刻度线、外刻度线都是一些抽象的纯数学语言)知识盲点多,几乎没有旧知识作铺垫,操作程序复杂:顶点和中心点重合,零刻度线和角的一边重合,看另一边在量角器上的刻度,还要分清内外刻度,(尤其是反向旋转的和不同方位的角)。
要找到解决难点的策略,必须分析造成难点的原因.我认为学生之所以分不清内外圈,找不对数的方向,原因是把角看作是静止的图形而非动态的过程,他们将角的两边孤立地量度,以为像量线段,看钟表一样,只要把一边对准0度,另一条指着几就读几.如果学生能把静态的角想象成从0度开始,慢慢打开,而度数随之增加的动态过程,我想问题就能迎刃而解了.
由此,我认为应采取"变静态为动态"的教学策略,并通过三个层次的活动来实现.具体实施如下:
活动一:伸展运动.我带着学生把两手臂伸开,当作角的两条边,把身体当作角的顶点.他们跟着我从两臂重合开始,一臂不动,另一臂慢慢展开,并一起读:0度,1度,2度,3度,4度,5度,10度,20度„„到90度时停下来感受一下.然后继续:100度,110度„„180度,„„,360度.然后我引导说:我们可以这样想象,所有的角都是从0度慢慢张开的. 5
这个活动学生很感兴趣,通过自己的肢体语言感受到角从0度张开的过程.虽然所指度数并不精确,但为后面在量角器上想象角的动态变化奠定了最直观的基础.
活动二:穿针引线.刚才的肢体动作只是粗线条的感受,而第二个活动则开始进入精细化的认识了.学生已经在课前预习了量角器的外部特征,汇报后我拿出一张白纸,在上面画出一条射线,再用一根带黑线的针从射线的端点处穿出.这样,纸上的射线和穿出来的黑线就能形成动态的角了.我把量角器摆在上方,在实物投影中大大地演示出来.从0度开始,师问:"这时角的边所对应的刻度有两个:0度和180度, 该读哪一个 往下数的时候数内圈还是外圈 "学生很聪明,立即回答说"读0度,该读外圈."随着老师缓慢地拉动针线,学生从外圈0度开始,也逐一读出了相应的数据,一直读到180度.接着,我又换了一个方向,从另一边的0度开始,这回学生反应可快了,"读内圈,因为这次的0度在里面!"„„
学生在动态中进一步感受到角的度数的变化过程,并明白了当选择不同方向为0度时,读数方向也随之改变的原理.这一活动为学生度量静止的角奠定了表象基础.
活动三:笔尖指路.这一活动则是测量完全静止的角了,也是本节课最终要达到的目标.我在实物投影中呈现了一个完整的角,提出问题:"这个固定的角,你能想象出它是怎样展开的吗 "学生有两种意见,一种是把右面的边视为0度,慢慢展开;另一种是把左面的边视为0度而慢慢展开,同学们认为都是可以的.于是按不同的展开方向,我们共同确定了0度所在的圈,并从0度开始,用笔尖顺着数据增加的方向慢慢移动,边移动边读出整十,整五的数,直到接近角的另一条边,将度数准确读出.
结束了三个活动后,我问学生:量角的时候,要特别注意什么 学生回答说:"一定要从0度开始顺着数下去."是的,这正是量角的关键,他们学会了.聪明的孩子掌握原理后很快就能找到最接近整十,整五的刻度再进行加减;学习比较困难的学生则乖乖的从0开始,顺着方向将可见的度数一一读出.虽然速度会慢了些,但方法掌握了,相信熟练后就会快起来.
(三)、图形与几何的教学应重视探究性
著名数学家波利亚说过:“学习任何知识的最佳途径是由学生自己去发现。
6 因为这种发现,理解最深,也最容易掌握其中的内在规律和联系。”教师无法代替学生自己的思考,更代替不了几十个差异的学生的思维。我们应该让每个学生根据自己的体验,用自己的思维方式自由地、开放地去探究、发现,去再创造有关的数学知识的过程。使学生不仅在于获得数学知识,更在于让学生在探究的过程中学习科学探究的方法,从而增强学生的自主意识,培养学生的探索精神和创造能力。
教师应从学生的生活经验和已有的知识背景出发,向学生提供充分的数学活动和数学交流的机会,鼓励学生动手操作、动手实践,帮助他们在自主探索的过程中真正理解和掌握基本的数学知识和技能、基本的数学思想和方法,获得广泛的数学活动经验,在操作实践中发展空间观念。
如教学“轴对称图形”时,为了让学生判断哪些基本的平面图形是轴对称图形,我组织学生借助课前准备的学具(长方形、平行四边形、梯形等基本的平面图形),以小组合作的方式,通过动手操作,找出其中的轴对称图形,并画出其对称轴。这样学生通过折一折、比一比、画一画,很轻松地就判断出其中的轴对称图形,并画出了相应的对称轴。在判断平行四边形是否是轴对称图形时,学生出现了争议,我再次组织学生借助手中的平行四边形折一折。再次操作之后,一个学生说:“把这种普通的平行四边形无论怎样折,两边不能完全重合,所以这样的平行四边形不是轴对称图形!”另一个学生马上说:“我手里的平行四边形沿着两条对角线对折,两边能完全重合,所以这个平行四边形是轴对称图形!”真有骑虎难下之势,我马上借题发挥:“大家快看看后一个平行四边形有没有什么特殊的地方呢?”学生通过观察和比较发现这个平行四边形四条边都相等,我适时告诉学生这样的平行四边形是菱形。这时马上有学生站起来发言:“一般的平行四边形不是轴对称图形,而有些特殊的平行四边形是轴对称图形,比如菱形!”还有学生继续补充:“还有长方形和正方形,它们都是特殊的平行四边形,也都是轴对称图形!”学生的实践、探究和发现一浪高过一浪,学生的思维碰撞出了火花!我想这样对于知识的提炼和升华皆源于先前的动手操作和自主探究。没有这样的操作和探究,学生就不会轻松地理解知识,学生就不会对知识有如此的深化和提升,更不会有思维的撞击和成功的体验!
四、图形与几何的教学应注意把握数形结合。
《图形的放大与缩小》是新旧教材《比例》这一内容的最大不同之处。它是 7 属于空间与图形领域中图形与变换方面的内容,比例的知识属于数与代数领域。新教材将《图形的放大与缩小》纳入到比例单元中,将两条线交织在一起。我认为主要是体现数形结合的思想,使知识形成和发展的基础更加扎实。就本课而言“从简单图形开始,借助实物或计算机演示,再让学生动手操作,由此充分体验图形的相似是指图形运动后,大小发生了变化,但形状不变,前后图形是相似的。
图形的放大与缩小,学生具有一定的生活经验,有自己的朴素认识。但是,这一认识是感性的、概括的、模糊的,只能是基于自身经验的理解,不能清楚地用数学的语言描绘变化的关系。而数学上的图形放大与缩小则是指按一定比例放大与缩小,它是一种定量的刻画。这一差距正是我们进行教学时需要加以利用的。教学中,我先出示很小图片,由于太小,学生就产生让老师将图像放大的想法。图形的放大与缩小学习的价值自然就蕴含其中。接着我出示了三幅图片(B、只放大长、C、只放大宽、D、长和宽都按一定比例放大),不出现数据。让学生说说自己的想法(此时由于图形B、C变形比较严重,一致认为D放大比较好)。我适时提问:为什么D比较好呢?在学生思考的时候我出现了相关的数据。经过学生的观察、讨论与交流,学生对于图形放大后相应边的变化有了清晰的认识,完成了真实的数学理解过程。在这一过程中不同的学生有了自己独特的体验。
其次是做到重视放大与缩小的比的理解。用数学的语言来表述图形放大与缩小的过程,我觉得按什么比放大与缩小比较难理解。教学中,当学生用自己的语言描述了图形A到图形D的变化过程后,我随之追问:“我们怎样将图形D变为图形A”。你怎样理解图形的放大与缩小?你是怎样理解 “2:1”的?”(
1、我觉得这个比是现在与原来的比。
2、我有一个重大的发现,将图形放大比的前项就大,将图形缩小比的后项就小。
3、要说清楚是按怎样的比放大或缩小的,只要先算出对应边的比,再看看是放大还是缩小,将前项或后项调整一下就行了„„学生的智慧碰撞,内心的欣喜溢于言表)通过教学,使我深深地认识到,学生脑中并不是一片空白,他们是重要的教学资源。
总之,小学数学中的“图形与几何”教学内容丰富,与实际生活联系紧密,但随着课程改革的不断推进,一定还有很多亟待解决的问题。只要我们从学生的实际出发,加大教学研究的力度,敢于实践,锐意创新,我们关于“图形与几何”的探究一定会硕果累累! 8
小学数学图形与几何教学策略初探
“图形与几何”这个内容是帮助学生生存并促进其发展的重要基础,是帮助学生形成创新意识,发展数学思维所必须的土壤。。
新课标在图形与几何领域有几个核心概念。主要有 空间观念、几何直观、推理能力 等 。
空间观念主要是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;
想象出物体的方位和相互之间的位置关系;
描述图形的运动和变化;
依据语言的描述画出图形等。
更直观的理解如下图:
几何直观主要是指利用图形的描述和分析问题,借助几何直观可以把复杂的数学问题,变得简明形象,有助于探索解决问题的思路,预测结果,探索思路预测结果。
案例:《打电话》
如果你是老师,有件紧急的事情要通知给同学,用打电话的方式,每分钟通知 1 人,给你 3 分钟的时间,能使多少人收到通知?大胆的猜测一下。
下面是学生借助图形研究的例子。这些学生都能够利用线段、点以图形的形式,来描述打电话来通知这件事情,设计方案。
通过这个数图就把这个复杂的数量关系,很简明很直观的呈现出来,而且从这个图本身,就能发现一些规律,就是一分钟通知一个人,第二次通知的新的人数,就是第一次的两倍,否则你算是算不出来,看图就看出来了。
通过线段、点,以及图形,把通知过程很简捷的表现出来,把它们之间的关系,揭示得非常清楚,这就属于典型的几何直观,就是图形直观。
推理能力 的发展应贯穿于整个数学学习过程中。推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。推理一般包括合情推理和演绎推理,合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推断某些结果;
演绎推理是从已有的事实(包括定义、公理、定理等)和确定的规则(包括运算的定义、法则、顺序等)出发,按照逻辑推理的法则证明和计算。在解决问题的过程中,两种推理功能不同,相辅相成:合情推理用于探索思路,发现结论;
演绎推理用于证明结论。
图形与几何安排了四个板块的内容:图形的认识、图形的测量、图形的运动、图形的位置。
下面我将从这四个板块来进行一一说明。
板块
一、图形的认识——抽象图形特征,发展空间观念
1、教材的编排体系:
第一, 现在的教材,在图形的认识当中,是先讲立体,再讲平面,再回到立体。从历史发展过程上看,实际上我们中国小学的传统教材,最初是按点、线、面、体的逻辑关系讲的。到了上个世纪 90 年代以后,义务大纲出现就发生变化了,先讲立体以后再讲平面,然后又回到立体。为什么当时要改?因为当时很多老师都反映,高年级孩子,对几何立体图形,本身的识图的能力比较低,认识起来比较困难。这部分是个难点,分阶段安排可以分散难点。
第二,实际上一个人是生活在三维空间当中,一个婴儿从出生落地,他所有接触的东西,看到的东西,实际上都是体,他的奶瓶,他玩的积木都是体,住的大大楼里,所有东西都是体,在这个过程中儿童积累了很多立体的物体,因此所有的几何体,都具有直观的实物的模型的。那在这种情况之下,低年级孩子,刚开始初步的认识立体图形是有可能的。
所以一是有必要,二是有可能,再加上儿童的空间观念的形成,必然是有一个长期的反复的积累的过程,不能一次到位。所以教材安排先讲立体图形,要求直观认识,然后中间一段是平面图形,最后再讲立体图形。现在教材也一样,先讲立体,后讲平面,再回到立体,但这两次讲立体层次不同,第一次要求辨认,到第二学段要求是认识。
也就是 “ 立体-平面-立体 ” 的混合螺旋编排结构 。
通过图形的认识教学,培养学生的空间观念的策略:
第
一、通过对实物的观察与操作认识图形
第一学段要求 “ 能通过实物和模型辨认长方体、正方体、圆柱和球等几何体 ”、“ 通过观察、操作,初步认识长方形、正方形的特征 ” ;
第二学段要求 “ 结合实例了解线段、射线和直线 ”、“ 结合生活情境了解平面上两条直线的平行和相交(包括垂直)关系 ” 等,这些要求的共同特点是通过观察与操作认识图形,直观地、整体地认识立体图形和平面图形。从对实物的观察与操作过程中来认识图形的特征和性质,既符合学生认识事物的规律,也符合数学课程的目标要求。这样的过程有助于学生发展能力,初步体会数学的思想方法,发展积极的情感与态度。
人们生活在三维的空间中,常见的楼房、积木、各种包装盒、皮球 „ 都给我们以长方体、正方体、圆柱体、球体等直观形象。基于这样的生活经验,学生可以从认识立体图形开始, “ 通过实物和模型等辨认长方体、正方体、圆柱和球等几何体 ” 。
“ 辨认 ” 是认识的低级阶段,但与以往的经验有所不同,它要经历从实物到几何图形的抽象过程。
从不同的角度观察长方体、正方体、圆柱体、球的表面,抽象出长方形、正方形、圆等平面图形。像这样从具体到抽象,从实物到图形,从整体到局部的安排,揭示了立体图形与平面图形的关系,也符合学生的认知特点。
第二学段要求 “ 结合实例了解线段、射线和直线 ”、“ 结合生活情境了解平面上两条直线的平行和相交(包括垂直)关系 ” 。射线和直线涉及到了无限的概念,与长方体、正方体、长方形、正方形等相比,在现实中没有 “ 直线 ” 的实物原型,这就需要学生进行抽象与想象。认识线段要容易一些,因为现实生活中有 “ 线段 ” 的实物原型。
类似的,学生理解两条直线平行的位置关系也比较困难,可以利用两根铁轨作为实物原型来描述,两根铁轨不相交以及它们之间的距离处处相等的事实,都揭示了平行线的本质,但铁轨无法总是笔直的延伸,所以在从实物到几何图形的抽象过程中还需要想象,这有助于学生发展抽象能力和空间观念。
第
二、基于图形的想象和图形之间的转换,发展空间观念 教材安排了 “ 视图和投影、展开与折叠 ” 等内容。
第一个学段的要求是根据具体事物照片或直观图,辨认从不同角度观察到的简单物体的形状,这是辨认。很多教材里面是这样,有的是拿个实物,有的是拿熊猫玩具等,让孩子们从各种角度去看,看的时候,孩子们就发现,不同角度看到的熊猫不一样。
第二个学段的要求能辨认从不同方向,方向是从前面、侧面或者上面来观察,从不同方向看到物体的形状图,这个形状图实际上就是一个平面图,就是从水平方向对物体所做的一个投影,也就是拍照。
例如
拍照的结果,虽然不是真正意义上的视图,但是它的确实现了,把三维空间向二维空间的一个转化的过程。
“折叠”和“展开”,过去教材也有,长方体、正方体、圆柱体的展开图。但是这个做法现在要加强,而且在进行折叠和展开当中,操作过程,必须要通过儿童的想象,这个过程本有什么实际意义呢?这是让孩子们认识到,立体图形的结构和展开图之间的这种对应关系。怎么让他来认识这个对应关系呢?
例如,“正方体展开图”课例。
通过课例可以看到,孩子可以折一折,通过操作找到结果;
也可以不折,先想一想,我们提倡先想象,再动手验证,这样有利于发展学生的空间想象力,促进空间观念的形成。
让学生操作的时候,它不是一个简单的操作,首先得想象一下,可能会是什么样子,然后再通过操作,去验证自己的想法,而这个过程,学生参与这个想象,包括动手操作,包括把这个过程表现出来,是非常重要的。
让学生的这种想象也好,操作也好,实际上进一步理解,我们讲三维和两维之间的这样一种关系,就是你讲的对应关系,是经历了下面过程。
“ 认识长方体、正方体和圆柱的展开图 ” ,体现了三维图形与二维图形之间相互转换的具体要求,目标是在图形转换中引导学生观察、抽象、想象,发展空间观念。教学中应注重展开与折叠的操作过程,通过想象实现图形之间的转换,让学生记忆展开图的数量或类型的做法是不可取的。
认识图形过程中大量的操作性活动,有利于学生积累数学活动经验,发展学生空间观念教学中应当予以充分的重视。
板块
二、图形的测量——渗透度量意识,掌握测量方法 这个内容的安排有两个要点
(一) 使学生体会建立统一度量单位的重要性
在教学长度单位的认识时,经常有老师问为什么要讲统一单位?原来的教学中学生就是直接认识长度单位,学习度量单位有什么价值?下面以人教版教材为例谈一谈:二年级学生第一次学习长度单位,教材呈现的例 1 ,并没有上来就认识厘米,而是创设了一个活动的情境:让学生测量数学书封面,有的学生用两个硬币或者两个三角形,两个曲别针进行测量。这个活动使学生感受用不同的测量工具,测量出不同的物体长度。然后例 2 是开始学习厘米的认识。
《标准》在第一学段要求“结合生活实际,经历用不同方式测量物体长度的过程,体会建立统一度量单位的重要性。” 这种要求对面积、体积的单位也同样适用。
度量单位是度量的核心, 建立标准度量单位,有助于学生从知识本身的逻辑体系出发,对建立标准单位的意义有客观地认识。教材这样编排,不仅突出了统一单位的重要性,也体现了一种数学的文化内涵,揭示了度量单位是怎么发生发展,又是怎么推动社会的前进的。
让学生体会建立统一的度量单位的重要性,不仅要在长度的测量中给予关注,在面积和体积的测量中,仍要让学生去感受。
(二)使学生理解与把握度量单位的实际意义,对测量结果有很好的感悟
单位不仅仅是一个抽象的概念,对它的体会和认识应当通过实践活动,体验它的 实际意义。
例如,生活中哪些物体的长度大约为 1 米 , 1 厘米 的长度可以用什么熟悉的 物体来估计,哪些物体的重量大约是 1 千克 ,哪些物体的体积大约是 1 立方米等。
对单位的实际意义的理解,还体现在对测量结果、对量的大小或关系的感悟。关于对度量单位的认识,要结合实际例子体会度量单位的大小,比如,一个成人的身高为 175 ( ),应当选择 cm 而不是 mm 作为单位,这是对认识长度单位地深化理解。
二、教学策略
1.以图形测量公式推导为载体,让学生在操作、实践中感悟“转化”、“极限”、“函数”和“积分”的数学思想。 在直边图形公式的推导过程中,教师经常让学生利用学具进行操作活动,将新图形转化成学过的已知图形,从而找到新旧两个图形之间的对应关系,推导出计算公式,在这个过程中巧妙地渗透了转化的数学思想方法。
圆是第
一、二学段学习的平面图形中唯一的一个曲线图形,是学生第一次了解π这个无理数 , 是学生第一次正式接触并运用极限的数学思想来解决曲线的长度和圆形的面积等问题,因此对圆的周长以及面积的探索具有一定的挑战性,这个过程的学习有助于学生提高分析问题、解决问题的能力,获得基本的数学活动经验,体会 ” 转化 ”、“极限”和“函数”的思想。
案例 1 :圆的周长公式的推导
化曲为直 -------- 转化思想
我们只需得到圆的周长和直径有什么关系就可以了,那么我们又该怎样研究周长与直径的关系呢?
老师给每组同学准备了不同的实物:有圆纸片、纸杯或硬币。
拿出来,就你们小组的实验材料,谁来说说怎样得到我们所需要的数据(尤其是周长的数据)?(讨论)为什么要绕线?为什么要滚动?(化曲为直)
活动二:
在圆的周长教学中,向学生介绍 “ 割圆术 ” ,让学生经历正多边形到圆的形成过程,引导学生观察体验,随着边数越来越多,正多边形越来越像圆,感受极限思想。
然后又化曲为直:
割之弥补,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣。
活动三:
测量寻找周长与直径的关系 ------- 函数思想
在测量圆的周长和直径填写数据的过程中,感受直径变,圆的大小变,周长也随之变化,而它们的倍数关系不变,从而让学生体会到函数思想。
通过课件形象直观的演示周长和直径的关系,体会函数思想。
策略
2、以多媒体课件为载体形象直观的演示,培养学生的猜测与推理能力以及空间想象能力。
案例 2 :平行四边形的面积公式的推导
通过以上案例地分析,可以看出,数学思想蕴涵在数学知识形成、发展和应用的过程中,是基础知识的灵魂,是数学知识和方法在更高层次上的抽象与概括,如抽象、分类、归纳、演绎、模型等。学生在积极参与教学活动的过程中,通过猜测---思考—验证数学思想。同时组织学生进行大量的操作性活动,有利于学生积累基本的数学活动经验。
这一板块的教学以往有这样的误区,就是将主要精力放在套用公式进行计算上,以至于将这部分内容简单地处理为计算问题。实际上,对于规则图形周长、面积和体积公式的探索和应用,不仅有利于学生灵活运用多种策略和方法解决实际问题,并且对于学生认识图形的特征和图形间的相互关系,发展空间观念也是大有好处的。
板块
三、图形的运动——体会研究方法,增加直观能力
一、图形的运动的学习价值:
运动是世间万物的基本特征,是物质存在的基本形式。所谓图形的运动,在义务教育数学课程中最基本的形式有两种:一是形状和大小不变,仅仅位置发生变化(合同运动);
二是形状不变而大小变化(相似运动)。
1.从学生角度来看
现实生活中存在着大量的图形的变换的现象,学生有丰富的生活经验,例如,电梯、地铁列车在平行移动;
钟面指针、自行车轮、电风扇叶片在旋转运动;
许多年画、卡通动物、建筑物的形状具有对称性。这些现象为儿童学习图形的变换提供了丰富多彩的现实背景。我们希望提供给学生一种数学的眼光,去认识和把握这些现象。通过图形的运动探索发现并确认图形的一些性质,有助于学生发展几何直观能力和空间观念,有利于学生提高研究图形性质的兴趣、体会研究图形性质可以有不同的方法。
2.从数学发展的角度来看
1872 年,德国大数学家克莱茵发表 “爱尔兰根纲领”的演说,这个里程碑式的论断,改变了近两千年来人们用静止的观点研究几何的传统方法。与静态地研究图形与几何的性质不同,图形的变换是从运动变化的角度去探索和认识图形与几何的性质,欣赏与设计图案。是发展学生空间观念和思维能力的重要内容。
二、“图形的运动”内容常用的教学策略:
策略一:结合生活实例,在观察与比较中认识图形的运动
新课标要求课程内容要反映社会的需要,数学学科的特征,也要符合学生的认知规律。课程内容的选择要贴近学生实际,有利于学生体验、思考与探索。因为儿童的抽象思维需要具体形象思维与生活经验给与支撑,对感知图形运动这样抽象概念来说尤其重要。小学阶段关于图形的图形的运动定位在积累感性体验,形成初步认识。因此结合实例展开教学是一条相当重要的教学策略。
在生活中有很多图形或图案呈现出对称、平移或旋转的形式,通过对称、平移、旋转变换同样可以设计制作美丽的图案。因此,在教学中,多收集一些这样的素材,通过学生的观察、比较,引导学生从运动变化的角度去发现不同的图形变换。
例如,教学“图形的变换”时丰富教材中的典型素材,注意融入了像道闸,车轮,钟摆等素材并利用信息技术动态呈现,让学生进一步感知旋转现象。在教学 “ 轴对称变换时 ”,借助一组学生在生活中喜闻乐见的民族特点浓厚的素材。
这样做,一方面有利于激发学生学习图形运动的兴趣,另一方面使学生进一步体会到数学与生活的密切联系,发展学生的概括能力。
策略二:借助操作活 动 ,加深对图形运动的认识, 帮 助 学 生 体 会变换 的特征
策略三:注重 从变换 的角度,引 导学 生欣 赏图 形、设计图 案
策略四:在解决问题中注重“ 图形的运动 ”和相关知识的联系,发展空间想象力和解决问题的能力
总之,小学阶段有关图形的运动的目标的达成是一个循序渐进的过程,教师在课堂教学中应该注重多种策略的运用,并以图形的运动教学为载体,培养学生的几何直观,发展空间观念。
板块
四、图形的位置——发展空间观念,提高推理能力
第一、二学段“图形与位置”的内容是按两条线索展开的:一是确定物体的相对位置;
二是辨认方向和使用路线图。(如下图)
把“图形与位置”的教学内容分成“确定物体的相对位置”、“辨认方向与使用路线图”两部分,可以让我们看出两方面内容是有区别的。但是它们并非截然分开,而是有联系的,无论是上下、前后、左右,还是东、南、西、北,都既可以用来描述物体的相对位置,又可以用来说明方向。例如,“把数学书放在作业本的上面”、“电梯上行”,前者表示相对位置,后者表示方向。
图形与位置”常用的教学策略:
1.充分利用学生的生活经验。
案例一:
五年级《用数对确定位置》教学前测 测试问题:请你在纸上描述出你们班长的位置。
下面是学生的几种做法:
①文字叙述班长的位置 班长的位置是第三排第四个 班长的位置是第三列第四个 班长在从 窗户数的第三排第四个。
从门这边数第五组的第四个是班长 ②画图表示班长的位置
③ 还有一个孩子谈到了,班长在我的斜后方第三个。
学生已有的知识经验很丰富,这固然可喜。但是,学生的想法各异,老师该如何处理呢?如何引导学生掌握教材介绍的“用数对确定位置”的方法呢?
案例解读:
面对学生不同的表示方法,教师应迅速归类,选择有代表性的方法,倾听学生的心声。在所有的学生理解不同的表示方法之后,通过不同表示方法的对比,让学生体会到确定位置要统一标准。
最后引导学生掌握用数对确定位置的方法:确定学生在教室中的位置,要以教师面向学生的位置为观测点, 竖排叫做列,横排叫做行。确定第几列一般是从左往右数,确定第几行一般是从前往后数。按这样的方法表示班长的位置应是:第五列第四行,可以简单表示为( 5 , 4 ),两个数的顺序不能调换。
学生的空间知识来自于丰富的现实原型,与现实生活关系非常紧密,这是他们理解和发展空间观念的宝贵资源。让学生在“教室里”、“校园内”、“电影院中”、“上学路上”等熟悉的情境中学习“位置与方向”的内容,不仅可以激发学习的兴趣,而且有利于更好地认识空间,发展空间观念。
②让学生经历生活经验回忆、观察、操作、想象、描述、思考、交流、分析、推理、表示等活动过程。
发展空间观念的途径是多样化的,在教学中我们只有让学生经历了多样化的数学活动过程,才能逐步发展空间观念。
③倡导自主探索与合作交流的教学方式。
以被动的听讲和练习为主的方式,很难形成空间观念。培养空间观念需要大量的实践活动,学生需要有充分的时间和空间去经历多样化的数学活动过程,这不仅需要自主探索、亲身体验,更需要合作交流。
最后提三点建议
1.把握好空间观念、几何直观、推理能力、应用意识等核心概念。 2.在数学活动中感悟数学思想,积累数学活动经验
3.通过开展观察、操作、想象等活动使学生经历学习过程,从而发展学生的空间观念。
几何教学心得体会(共13篇)
立体几何教学心得体会(共20篇)
语文教学实践与研究心得体会(共18篇)
七年级几何图形教案模板(共14篇)
认识图形教学心得体会(共10篇)
版权声明:
1.十号范文网的资料来自互联网以及用户的投稿,用于非商业性学习目的免费阅览。
2.《图形与几何教学研究,心得体会》一文的著作权归原作者所有,仅供学习参考,转载或引用时请保留版权信息。
3.如果本网所转载内容不慎侵犯了您的权益,请联系我们,我们将会及时删除。